Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and performance analysis of microcavity-enhanced graphene photodetector

Liang Zhen-Jiang Liu Hai-Xia Niu Yan-Xiong Yin Yi-heng

Citation:

Design and performance analysis of microcavity-enhanced graphene photodetector

Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There is an increasing interest in grapheme photodetector for its applications, because graphene has rich optical and electronic properties, including zero band gap, high mobility and special optical absorption properties. A design of microcavity-enhanced photodetector based on ultra-thin graphene is proposed in this paper: detector absorption can be effectively improved by confining the light field in the microcavity. Through studying the light field resonant condition in the microcavity and enhanced mechanism of detector responsivity under resonant mode, the light absorption model of a microcavity-enhanced graphene photodetector under standing wave effect is established; it is analyzed that the influences of microcavity mirror reflectivity and length on detector performance are increased by light field. Further the optimal structure parameters and performance evaluations of microcavity-enhanced graphene photodetector at different incident wavelengths are demonstrated. Theoretical analysis shows that under the standing wave effect the effective absorption coefficient of monolayer graphene at the antinode is one multiple enlargement compared with no cavity; the microcavity length and topbottom mirror reflectivity directly affect the optical total phase during light folding back at one time in the microcavity, and the shift of the total optical phase changes the full width at half maximum (FWHM) of the responsivity of the microcavity-enhanced graphene photodetector. Through coordinating the relations among the microcavity length and reflectivities of two mirrors and the incident wavelength, it can be realized that the photodetector has a good characteristic of wavelength selectivity. At a nominal operating wavelength of 850 nm, the presented microcavity-enhanced graphene photodetector can reach a responsivity of 0.5 A/W, 32-fold increase compared with monolayer graphene photodetector with no cavity and FWHM can reach 10 nm, indicating that the designed photodetector has a high responsivity and a good charactoristic of narrowband. As for the application in the practical engineering, through adopting bias on the two sides of graphene in the cavity to speed up the migration velocity of the photon-generated carrier, more photon-generated carriers are produced to increase the photodetector responsivity. However, the increased level of photodetector responsivity will be impeded acctually on account of the high contact resistance between graphene and electrode, and the measured value will not equal the theoretical value, so the quantitative analysis on the value of the bias should be carried out. Through combining the microcavity with graphene the incident light can be confined to reflect multiple times between two mirrors in the microcavity to improve the graphene absorption, and then make the microcavity-enhanced graphene photodetector responsivity improved. Our approach can be used to improve the optical response of graphene photodetector, and provides a way to solve the trade-off between photodetector responsivity and response speed.
      Corresponding author: Liu Hai-Xia, liuhx08@buaa.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No.7152089).
    [1]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Wallace P R 1947 Phys. Rev. 71 622

    [4]

    Novoselov K S, Geim A K, Morozov S V, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Phaedon A 2010 Nano Lett. 10 4285

    [6]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [7]

    Gao L, Guest J R, Guisinger N P 2010 Nano Lett. 10 3512

    [8]

    Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F, Kong J 2008 J. Phys. Chem. C 112 17741

    [9]

    Zeng C, Guo J, Liu X M 2014 Appl. Phys. Lett. 105 121103

    [10]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 62 187301]

    [11]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [12]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [13]

    Liu Y, Cheng R, Liao L, Zhou H L, Bai J W, Liu G, Liu L X, Huang Y, Duan X F 2011 Nat. Commun. 2 579

    [14]

    Yu W J, Liu Y, Zhou H L, Yin A X, Li Z, Huang Y, Duan X F 2013 Nature Nanotechnol. 8 952

    [15]

    Fang Z Y, Liu Z, Wang Y M, Pulickel M A, Peter N, Naomi J H 2012 Nano Lett. 12 3808

    [16]

    Fromherz T, Mueller T 2013 Nat. Photon. 7 892

    [17]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nature Photon. SI. 7 888

    [18]

    Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883

    [19]

    Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906

    [20]

    Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773

    [21]

    Zhou Y 2009 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China)(in Chinese)[周勇 2009 硕士学位论文(成都: 电子科技大学)]

    [22]

    Schaub J D, Li R, Campbell J C, Schow C L, Neudeck G W, Denton J 1999 Photon. Technol. Lett. 11 1647

    [23]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [24]

    Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2002 IEEE Photon. Technol. Lett. 14 717

  • [1]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Wallace P R 1947 Phys. Rev. 71 622

    [4]

    Novoselov K S, Geim A K, Morozov S V, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Phaedon A 2010 Nano Lett. 10 4285

    [6]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [7]

    Gao L, Guest J R, Guisinger N P 2010 Nano Lett. 10 3512

    [8]

    Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F, Kong J 2008 J. Phys. Chem. C 112 17741

    [9]

    Zeng C, Guo J, Liu X M 2014 Appl. Phys. Lett. 105 121103

    [10]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 62 187301]

    [11]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [12]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [13]

    Liu Y, Cheng R, Liao L, Zhou H L, Bai J W, Liu G, Liu L X, Huang Y, Duan X F 2011 Nat. Commun. 2 579

    [14]

    Yu W J, Liu Y, Zhou H L, Yin A X, Li Z, Huang Y, Duan X F 2013 Nature Nanotechnol. 8 952

    [15]

    Fang Z Y, Liu Z, Wang Y M, Pulickel M A, Peter N, Naomi J H 2012 Nano Lett. 12 3808

    [16]

    Fromherz T, Mueller T 2013 Nat. Photon. 7 892

    [17]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nature Photon. SI. 7 888

    [18]

    Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883

    [19]

    Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906

    [20]

    Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773

    [21]

    Zhou Y 2009 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China)(in Chinese)[周勇 2009 硕士学位论文(成都: 电子科技大学)]

    [22]

    Schaub J D, Li R, Campbell J C, Schow C L, Neudeck G W, Denton J 1999 Photon. Technol. Lett. 11 1647

    [23]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [24]

    Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2002 IEEE Photon. Technol. Lett. 14 717

  • [1] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [3] Zhu Yi-Fan, Geng Tao. Generation of high-quality circular Airy beams in laser resonator. Acta Physica Sinica, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [4] Zhao Hong-Yu, Wang Di, Wei Zhi, Jin Guang-Yong. Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser. Acta Physica Sinica, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [5] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Liu Kai-Ming, Yin Yi-Heng. Design and performance analysis of THz microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [6] Zhuang Yu-Yang, Zhou Wen, Ji Ke, Chen He-Ming. A narrow bandpass filter based on two-dimensional photonic crystals with two reflectors. Acta Physica Sinica, 2015, 64(22): 224202. doi: 10.7498/aps.64.224202
    [7] Li Pei, Wang Fu-Zhong, Zhang Li-Zhu, Zhang Guang-Lu. Influence of left-handed material on the resonant frequency of resonant cavity. Acta Physica Sinica, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [8] Yang Dan, Zhang Li, Yang Sheng-Yi, Zou Bing-Suo. Low-voltage pentacene photodetector based on a vertical transistor configuration. Acta Physica Sinica, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [9] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [10] Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen. Experimental studies of the surface plasmon polaritons waveguide filter in microwave band. Acta Physica Sinica, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [11] Huo Wen-Juan, Xie Hong-Yun, Liang Song, Zhang Wan-Rong, Jiang Zhi-Yun, Chen Xiang, Lu Dong. Uni-traveling-carrier double heterojunction phototransistor photodetector. Acta Physica Sinica, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [12] Lei Chao-Jun, Yu Sheng, Li Hong-Fu, Niu Xin-Jian, Liu Ying-Hui, Hou Shen-Yong, Zhang Tian-Zhong. Study on gradually-varying cavity for a gyrotron. Acta Physica Sinica, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [13] Fang Jin-Yong, Huang Hui-Jun, Zang Zhi-Qiang, Huang Wen-Hua, Jiang Wei-Hua. High power microwave pulse compression systembased on cylindrical resonant cavity. Acta Physica Sinica, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [14] Bai Ning-Feng, Hong Wei, Sun Xiao-Han. Composite defect electromagnetic band gap cavity. Acta Physica Sinica, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [15] Liu Chang, Luo Yao-Tian, Tang Chang-Jian, Liu Pu-Kun. Electromagnetic mode analysis on the cold characteristics of photonic-band-gap resonant cavity loaded in gyrotron. Acta Physica Sinica, 2009, 58(12): 8174-8179. doi: 10.7498/aps.58.8174
    [16] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [17] Yang Rui, Xie Yong-Jun, Wang Peng, Yang Tong-Min. Subwavelength cavity resonator microstrip antennas based on left-and right-handed metamaterial bilayered substrates. Acta Physica Sinica, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [18] Luo Xiong, Liao Cheng, Meng Fan-Bao, Zhang Yun-Jian. Resonance effect on a coaxial vircator. Acta Physica Sinica, 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [19] Zhang Jun, Zhong Hui-Huang. Investigation on longitudinal mode selection in O-type HPM devices. Acta Physica Sinica, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [20] Cheng Yuan-Ying, Wang You-Qing, Hu Jin, Li Jia-Rong. A novel eigenvector method for calculation of optical resonator modes and beam propagation. Acta Physica Sinica, 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
Metrics
  • Abstract views:  7317
  • PDF Downloads:  503
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2016
  • Accepted Date:  27 March 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map