Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet

Wang Sen Cai Li Cui Huan-Qing Feng Chao-Wen Wang Jun Qi Kai

Citation:

Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet

Wang Sen, Cai Li, Cui Huan-Qing, Feng Chao-Wen, Wang Jun, Qi Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The need for low-power alternatives to digital electronic circuits has aroused the increasing interest in spintronic devices for their potentials to overcome the power and performance limitations of (CMOS). In particular, all spin logic (ASL) technology, which stores information using the magnetization direction of the nano-magnet and communicates using spin current, is generally thought to be a good post-CMOS candidate for possessing capabilities such as nonvolatiliy, high density, low energy dissipation. In this paper, based on nano-magnetic dynamics described by Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation and transport physics of spin injection and spin diffusion, a coupled spin-transport/magneto-dynamics model for ASL is established. Under different channel lengths and applied voltages, the switching characteristics of ASL device comprised of Co and Permalloy (Py) nano-magnets are analyzed by using the coupled spin-transport/magneto-dynamics model. The results indicate that the switch delay, energy dissipation and thermal noise effect of PyASL are lower than those of CoASL. The main reason is that the saturation magnetization of Py is less than that of Co. Under the same applied voltage, the maximal channel length of PyASL is longer than that of CoASL when ASL device can switch accurately. Moreover, the two ASL devices' switching delay can be reduced by reducing channel length or increasing applied voltage, and the energy dissipation can be reduced by reducing channel length or applied voltage, whereas there are no optimized applied voltages to minimize the energy-delay product. In addition, the influences of thermal noise on switching delay and energy dissipation can be improved by lowering channel length, but increasing applied voltage can only improve the influence of thermal noise on switching delay. The above-mentioned conclusions will supply essential guidelines for optimizing the ASL devices' materials and configuration.
      Corresponding author: Wang Sen, wangsen1998-2002@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172043), the Program of Shaanxi Provincial Natural Science for Basic Research, China (Grant No. 2014JQ8343) and the Sustentation Funds of the Science College for Doctoral (Postdoctoral) Scientific Research, Air Force Engineering University, China (Grant No. 2013BSKYQD10).
    [1]

    Locatelli N, Cros V, Grollier J 2014 Nature Mater. 13 11

    [2]

    Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106

    [3]

    Yang F J, Han S X, Xie S J 2014 Chin. Phys. B 23 058106

    [4]

    Wu S B, Chen S, Li H, Yang X F 2012 Acta Phys. Sin. 61 097504 (in Chinese) [吴少兵, 陈实, 李海, 杨晓非 2012 61 097504]

    [5]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149

    [6]

    Grollier J 2001 Appl. Phys. Lett. 78 3663

    [7]

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [8]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [9]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈培毅 2008 57 2427]

    [10]

    Wang W G, Li M G, Hageman S, Chien C L 2012 Nature Mater. 11 64

    [11]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 94 122508

    [12]

    Guo Z Z, Deng H D, Huang J S, Xiong W J, Xu C D 2014 Acta Phys. Sin. 63 138501 (in Chinese) [郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东 2014 63 138501]

    [13]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [14]

    Chen X, Liu H F, Han X F, Ji Y 2013 Acta Phys. Sin. 62 137501 (in Chinese) [陈希, 刘厚方, 韩秀峰, 姬杨 2013 62 137501]

    [15]

    Yang J, Zhang X, Miao R D 2014 Acta Phys. Sin. 63 217202 (in Chinese) [杨军, 章曦, 苗仁德 2014 63 217202]

    [16]

    Xu P 2008 Nature Nanotech. 3 97

    [17]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

    [18]

    Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026

    [19]

    Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circuits Syst. I. Reg. Papers 61 393

    [20]

    Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905

    [21]

    Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513

    [22]

    Behin-Aein B, Sarkar A, Srinivasan S, Datta S 2011 Appl. Phys. Lett. 98 123510

    [23]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [24]

    Brataas A, Bauer G E W, Kelly P J 2006 Phys. Rep. 427 157

    [25]

    Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circuits Syst. I. Reg. Papers 59 2801

    [26]

    Ji Y, Hoffmann A, Jiang J S, Pearson J E, Bader S D 2007 J. Phys. D: Appl. Phys. 40 1280

    [27]

    Bass J, William P P 2007 J. Phys.: Condens. Matter 19 183201

    [28]

    Trudel S, Gaier O, Hamrle J, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001

    [29]

    Bonanni V, Bisero D, Vavassori P, Gubbiotti G, Madami M, Adeyeye A O, Goolaup S, Singh N, Ono T, Spezzani C 2009 J. Magn. Magn. Mater. 321 3038

    [30]

    Johnson M T, Jungblut R, Kelly P J, Broeder F J A 1995 J. Magn. Magn. Mater. 148 118

    [31]

    Lee S W, Lee K J 2010 IEEE Trans. Magn. 46 2349

    [32]

    Gradmann U, Elmers H J 1999 J. Magn. Magn. Mater. 206 L107

  • [1]

    Locatelli N, Cros V, Grollier J 2014 Nature Mater. 13 11

    [2]

    Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106

    [3]

    Yang F J, Han S X, Xie S J 2014 Chin. Phys. B 23 058106

    [4]

    Wu S B, Chen S, Li H, Yang X F 2012 Acta Phys. Sin. 61 097504 (in Chinese) [吴少兵, 陈实, 李海, 杨晓非 2012 61 097504]

    [5]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149

    [6]

    Grollier J 2001 Appl. Phys. Lett. 78 3663

    [7]

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [8]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [9]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈培毅 2008 57 2427]

    [10]

    Wang W G, Li M G, Hageman S, Chien C L 2012 Nature Mater. 11 64

    [11]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 94 122508

    [12]

    Guo Z Z, Deng H D, Huang J S, Xiong W J, Xu C D 2014 Acta Phys. Sin. 63 138501 (in Chinese) [郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东 2014 63 138501]

    [13]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [14]

    Chen X, Liu H F, Han X F, Ji Y 2013 Acta Phys. Sin. 62 137501 (in Chinese) [陈希, 刘厚方, 韩秀峰, 姬杨 2013 62 137501]

    [15]

    Yang J, Zhang X, Miao R D 2014 Acta Phys. Sin. 63 217202 (in Chinese) [杨军, 章曦, 苗仁德 2014 63 217202]

    [16]

    Xu P 2008 Nature Nanotech. 3 97

    [17]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

    [18]

    Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026

    [19]

    Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circuits Syst. I. Reg. Papers 61 393

    [20]

    Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905

    [21]

    Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513

    [22]

    Behin-Aein B, Sarkar A, Srinivasan S, Datta S 2011 Appl. Phys. Lett. 98 123510

    [23]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [24]

    Brataas A, Bauer G E W, Kelly P J 2006 Phys. Rep. 427 157

    [25]

    Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circuits Syst. I. Reg. Papers 59 2801

    [26]

    Ji Y, Hoffmann A, Jiang J S, Pearson J E, Bader S D 2007 J. Phys. D: Appl. Phys. 40 1280

    [27]

    Bass J, William P P 2007 J. Phys.: Condens. Matter 19 183201

    [28]

    Trudel S, Gaier O, Hamrle J, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001

    [29]

    Bonanni V, Bisero D, Vavassori P, Gubbiotti G, Madami M, Adeyeye A O, Goolaup S, Singh N, Ono T, Spezzani C 2009 J. Magn. Magn. Mater. 321 3038

    [30]

    Johnson M T, Jungblut R, Kelly P J, Broeder F J A 1995 J. Magn. Magn. Mater. 148 118

    [31]

    Lee S W, Lee K J 2010 IEEE Trans. Magn. 46 2349

    [32]

    Gradmann U, Elmers H J 1999 J. Magn. Magn. Mater. 206 L107

  • [1] Wen Li, Lu Mao-Wang, Chen Jia-Li, Chen Sai-Yan, Cao Xue-Li, Zhang An-Qi. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling. Acta Physica Sinica, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin. Field-like torque-induced tunable zero-field spin-torque nano-oscillator. Acta Physica Sinica, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [3] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] Yin Bi-Huan, He Zi, Ding Da-Zhi. Rotating speed estimation of spinning objects based on rotational Doppler effect. Acta Physica Sinica, 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [5] He Hao-Bin, Lan Xiu-Kai, Ji Yang. Spin-orbit torque efficiency improved by BiSePt alloy. Acta Physica Sinica, 2023, 72(13): 137201. doi: 10.7498/aps.72.20230285
    [6] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [7] Li Chong-Yang, Li Meng-De, Wang Mei, Li Tao, Liu Jian-Dang, Ye Bang-Jiao, Chen Zhi-Quan. Spin conversion of positronium of ZIFs nanocrystalline. Acta Physica Sinica, 2022, 71(15): 157801. doi: 10.7498/aps.71.20220305
    [8] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [9] Han Xiu-Feng, Wan Cai-Hua. Recent progress of nonvolatile, multifunctional and programmable spin logic. Acta Physica Sinica, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [10] Chi Ming-He, Zhao Lei. First-principles study of magnetic order in graphene nanoflakes as spin logic devices. Acta Physica Sinica, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [11] Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo. Switching characteristics of all-spin logic devices based on graphene interconnects. Acta Physica Sinica, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [12] Chen Jun, Yu Ya-Fei, Zhang Zhi-Ming. Optimizing quantum state transfer in multi-excitation spin chains via information flux. Acta Physica Sinica, 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [13] Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie. Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator. Acta Physica Sinica, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [14] Guo Zi-Zheng, Deng Hai-Dong, Huang Jia-Sheng, Xiong Wan-Jie, Xu Chu-Dong. Spin-torque critical current tuned by stress. Acta Physica Sinica, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [15] Zheng Yong-Lin, Wang Xiao-Xi, Ge Ze-Ling, Guo Hong-Li, Yan Gang-Feng, Dai Song-Hui, Zhu Xiao-Ling, Tian Xiao-Bin. Transmission and application of electron spin wave function in alternating ferromagnetic and nonmagnetic layers. Acta Physica Sinica, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [16] Li Chun, Zhang Shao-Bin, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin transfer in linear magnetic molecular ions. Acta Physica Sinica, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [17] Jin Wei, Wan Zhen-Mao, Liu Yao-Wen. Nonlinear magnetization dynamics excited by the spin-transfer torque effect. Acta Physica Sinica, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [18] Yan Xiao-Bo, Wang Shun-Jin. Single qubit and its universal logic gate made of an annular spin cluster with anisotropic Heisenberg-chain. Acta Physica Sinica, 2006, 55(4): 1591-1595. doi: 10.7498/aps.55.1591
    [19] YI LIN, YAO KAI-LUN. QUANTUM TRANSPORT EQUATION FOR SPIN GLASS SYSTEMS. Acta Physica Sinica, 1994, 43(6): 1024-1028. doi: 10.7498/aps.43.1024
    [20] WU ZHI-YU, WANG KE-LIN. THE FIELD EQUATION OF HALF-INTEGER SPIN IN CURVED SPACE-TIME. Acta Physica Sinica, 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
Metrics
  • Abstract views:  6599
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2015
  • Accepted Date:  25 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map