Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process

Lu Yong-Jun Yang Yi Wang Feng-Hui Lou Kang Zhao Xiang

Citation:

Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process

Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Solid oxide fuel cell (SOFC) is considered to be a highly efficient device to convert chemical fuels directly into electrical power. Because of multilayer composite arrangement of cells, mismatch of the thermal expansion coefficients, chemical/thermal gradient, or phase change of the materials will result in residual stresses, which are reflected in the pronounced bending of unconstrained cells and cause a reliable problem. Considerable efforts have been devoted to the analysis of residual stresses in an elastic multilayer system, and one of the efforts that are to improve not only electrochemical performance for high energy conversion efficiency but also long term stability, is to process a continuously gradient anode functional layer (CG-AFL) between dense electrolyte and porous anode. Hence to understand the stress distribution and deformation of the multilayer with a CG-AFL is needed for the cell design. As the chemical reduction takes place at the interface between NiO-YSZ and the previously reduced porous Ni-YSZ, a reduced layer, together with the unreduced layer and the electrolyte will cause the residual stresses to be re-distributed. In this paper, taking the CG-AFL into account, the curvature and residual stresses of half-cell during reduction are analyzed. The results show that the curvature of half-cell with a CG-AFL increases as the reduction process. And the curvature would also increase as the thickness of the CG-AFL increases, and decrease with the increase of the index of power function that expresses young's modulus and thermal expansion coefficient of gradient layer. The residual stresses among the layers are correspondingly influenced by the thickness of the gradient layer, the index of power function and reduction extent. When taking power function as a linear function, the gradient layer obviously reduces the residual stress in the electrolyte. However, the increase of the index in power function will cause the increase of electrolyte residual stress. These mentioned analyses reveal that the CG-AFL cannot offer a solution that simultaneously improves the residual stress and curvature in a half-cell in terms of thickness and profile exponent of CG-AFL, i.e., the mitigation of residual stress will give rise to the increase of curvature, and vice versa. On the other hand, for part-reduced half-cell, the maximum tensile stress is found at anode/gradient layer interface in anode layer, which may facilitate structural failure since tensile residual stress is so high that it reaches the fracture strength of anode material. Consequently, it is important to ensure that the anode is fully reduced in practice. In conclusion, the existing gradient layer is helpful for enhancing the cell reliability via suitable design.
      Corresponding author: Wang Feng-Hui, fhwang@nwpu.edu.cn
    • Funds: Project supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. Z2015087), the National Natural Science Foundation of China (Grant Nos. 11372251, 11572253) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102014JCQ01040).
    [1]

    Radovic M, Lara-Curzio E 2004 Acta Mater. 52 5747

    [2]

    Atkinson A, Sun B 2007 Mater. Sci. Tech. -Lond. 23 1135

    [3]

    Malzbender J 2010 J. Eur. Ceram. Soc. 30 3407

    [4]

    Mller A C, Herbstritt D, Ivers-Tiffe E 2002 Solid State Ionics 152 537

    [5]

    Kong J, Sun K, Zhou D, Zhang N, Mu J, Qiao J 2007 J. Power Sources 166 337

    [6]

    Yang Y Z, Zhang H O, Wang G L, Xia W S 2007 J. Therm. Spray Techn. 16 768

    [7]

    Wang Z, Zhang N, Qiao J, Sun K, Xu P 2009 Electrochem. Commun. 11 1120

    [8]

    Mccoppin J, Barney I, Mukhopadhyay S, Miller R, Reitz T, Young D 2012 J. Power Sources 215 160

    [9]

    Sun C Q, Fu Y Q, Yan B B, Hsieh J H, Lau S P, Sun X W, Tay B K 2002 J. Appl. Phys. 91 2051

    [10]

    Zhang X, Hao F, Chen H, Fang D 2015 Mech. Mater. 91 351

    [11]

    Zhong Z, Wu L Z, Chen W Q 2010 Adv. Mech. 40 528 (in Chinese) [仲政, 吴林志, 陈伟球 2010 力学进展 40 528]

    [12]

    Su B, Yan H G, Chen J H, Chen G, Du J Q 2013 Chin. J. Nonferrous. Met. 23 201 (in Chinese) [苏斌, 严红革, 陈吉华, 陈刚, 杜嘉庆 2013 中国有色金属学报 23 201]

    [13]

    Zhang K, Lu Y J, Wang F H 2015 Acta Phys. Sin. 64 064703 (in Chinese) [张凯, 陆勇俊, 王峰会 2015 64 064703]

    [14]

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304 (in Chinese) [段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 64 067304]

    [15]

    Hsueh C H, Lee S 2003 Compos. Part B: Eng. 34 747

    [16]

    Hsueh C 2003 J. Cryst. Growth 258 302

    [17]

    Malzbender J, Wakui T, Steinbrech R W 2006 Fuel Cells 6 123

    [18]

    Zhang T, Zhu Q, Huang W L, Xie Z, Xin X 2008 J. Power Sources 182 540

    [19]

    Xiang Z, Haibo S, Fenghui W, Kang L, Jianye H 2014 Fuel Cells 14 1057

    [20]

    Zhang N, Xing J 2006 J. Appl. Phys. 100 103519

    [21]

    Zhang N 2007 Thin Solid Films 515 8402

    [22]

    Zhang N, Chen J 2010 Compos. Part B: Eng. 41 375

    [23]

    Williamson R L, Rabin B H, Drake J T 1993 J. Appl. Phys. 74 1310

    [24]

    Sun B, Rudkin R A, Atkinson A 2009 Fuel Cells 9 805

    [25]

    Wang X, Wang F H, Jian Z Y, Gu Z P, Zhang K 2014 Rare Metal Mat. Eng. 43 346 (in Chinese) [王霞, 王峰会, 坚增运, 顾致平, 张凯 2014 稀有金属材料与工程 43 346]

    [26]

    Atkinson A, Seluk A 1999 Acta Mater. 47 867

    [27]

    Sarantaridis D, Atkinson A 2007 Fuel Cells 7 246

    [28]

    Malzbender J, Fischer W, Steinbrech R W 2008 J. Power Sources 182 594

    [29]

    Seluk A, Atkinson A 2000 J. Am. Ceram. Soc. 83 2029

    [30]

    Sarantaridis D, Chater R J, Atkinson A 2008 J. Electrochem. Soc. 155 B467

    [31]

    Tietz F 1999 Ionics 5 129

    [32]

    Minh N Q 1993 J. Am. Ceram. Soc. 76 563

    [33]

    Ettler M, Timmermann H, Malzbender J, Weber A, Menzler N H 2010 J. Power Sources 195 5452

    [34]

    Faes A, Hessler-Wyser A, Zryd A 2012 Membranes 2 585

    [35]

    Fouquet D, Muller A C, Weber A, Ivers-Tiffee E 2003 Ionics 9 103

  • [1]

    Radovic M, Lara-Curzio E 2004 Acta Mater. 52 5747

    [2]

    Atkinson A, Sun B 2007 Mater. Sci. Tech. -Lond. 23 1135

    [3]

    Malzbender J 2010 J. Eur. Ceram. Soc. 30 3407

    [4]

    Mller A C, Herbstritt D, Ivers-Tiffe E 2002 Solid State Ionics 152 537

    [5]

    Kong J, Sun K, Zhou D, Zhang N, Mu J, Qiao J 2007 J. Power Sources 166 337

    [6]

    Yang Y Z, Zhang H O, Wang G L, Xia W S 2007 J. Therm. Spray Techn. 16 768

    [7]

    Wang Z, Zhang N, Qiao J, Sun K, Xu P 2009 Electrochem. Commun. 11 1120

    [8]

    Mccoppin J, Barney I, Mukhopadhyay S, Miller R, Reitz T, Young D 2012 J. Power Sources 215 160

    [9]

    Sun C Q, Fu Y Q, Yan B B, Hsieh J H, Lau S P, Sun X W, Tay B K 2002 J. Appl. Phys. 91 2051

    [10]

    Zhang X, Hao F, Chen H, Fang D 2015 Mech. Mater. 91 351

    [11]

    Zhong Z, Wu L Z, Chen W Q 2010 Adv. Mech. 40 528 (in Chinese) [仲政, 吴林志, 陈伟球 2010 力学进展 40 528]

    [12]

    Su B, Yan H G, Chen J H, Chen G, Du J Q 2013 Chin. J. Nonferrous. Met. 23 201 (in Chinese) [苏斌, 严红革, 陈吉华, 陈刚, 杜嘉庆 2013 中国有色金属学报 23 201]

    [13]

    Zhang K, Lu Y J, Wang F H 2015 Acta Phys. Sin. 64 064703 (in Chinese) [张凯, 陆勇俊, 王峰会 2015 64 064703]

    [14]

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304 (in Chinese) [段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 64 067304]

    [15]

    Hsueh C H, Lee S 2003 Compos. Part B: Eng. 34 747

    [16]

    Hsueh C 2003 J. Cryst. Growth 258 302

    [17]

    Malzbender J, Wakui T, Steinbrech R W 2006 Fuel Cells 6 123

    [18]

    Zhang T, Zhu Q, Huang W L, Xie Z, Xin X 2008 J. Power Sources 182 540

    [19]

    Xiang Z, Haibo S, Fenghui W, Kang L, Jianye H 2014 Fuel Cells 14 1057

    [20]

    Zhang N, Xing J 2006 J. Appl. Phys. 100 103519

    [21]

    Zhang N 2007 Thin Solid Films 515 8402

    [22]

    Zhang N, Chen J 2010 Compos. Part B: Eng. 41 375

    [23]

    Williamson R L, Rabin B H, Drake J T 1993 J. Appl. Phys. 74 1310

    [24]

    Sun B, Rudkin R A, Atkinson A 2009 Fuel Cells 9 805

    [25]

    Wang X, Wang F H, Jian Z Y, Gu Z P, Zhang K 2014 Rare Metal Mat. Eng. 43 346 (in Chinese) [王霞, 王峰会, 坚增运, 顾致平, 张凯 2014 稀有金属材料与工程 43 346]

    [26]

    Atkinson A, Seluk A 1999 Acta Mater. 47 867

    [27]

    Sarantaridis D, Atkinson A 2007 Fuel Cells 7 246

    [28]

    Malzbender J, Fischer W, Steinbrech R W 2008 J. Power Sources 182 594

    [29]

    Seluk A, Atkinson A 2000 J. Am. Ceram. Soc. 83 2029

    [30]

    Sarantaridis D, Chater R J, Atkinson A 2008 J. Electrochem. Soc. 155 B467

    [31]

    Tietz F 1999 Ionics 5 129

    [32]

    Minh N Q 1993 J. Am. Ceram. Soc. 76 563

    [33]

    Ettler M, Timmermann H, Malzbender J, Weber A, Menzler N H 2010 J. Power Sources 195 5452

    [34]

    Faes A, Hessler-Wyser A, Zryd A 2012 Membranes 2 585

    [35]

    Fouquet D, Muller A C, Weber A, Ivers-Tiffee E 2003 Ionics 9 103

  • [1] Xie JiaMiao, Li JingYang, Zhou JiaYi, Hao WenQian. Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [2] Guo Can, Zhao Yu-Ping, Deng Ying-Yuan, Zhang Zhong-Ming, Xu Chun-Jie. A phase-field study on interaction process of moving grain boundary and spinodal decomposition. Acta Physica Sinica, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [3] Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong. Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model. Acta Physica Sinica, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [4] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [5] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [6] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [7] Liu Hua-Yan, Fan Yue, Kang Zhen-Feng, Xu Yan-Bin, Bo Qing-Rui, Ding Tie-Zhu. Preparation and characterization of the superlattice (Sm-doped ceria/yttria-stabilized zirconia)N electrolyte film. Acta Physica Sinica, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [8] Wang Hong, Yun Feng, Liu Shuo, Huang Ya-Ping, Wang Yue, Zhang Wei-Han, Wei Zheng-Hong, Ding Wen, Li Yu-Feng, Zhang Ye, Guo Mao-Feng. Effect of wafer bonding and laser liftoff process on residual stress of GaN-based vertical light emitting diode chips. Acta Physica Sinica, 2015, 64(2): 028501. doi: 10.7498/aps.64.028501
    [9] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng, Wu Qin. Image smoothing model based on the combination of the gradient and curvature. Acta Physica Sinica, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [10] Jiang Wei-Wei, Fan Lin-Yong, Zhao Rui-Feng, Wei Yan, Pei Li, Jian Shui-Sheng. Comb-filter based on two core fiber coupler and its CO2 laser trimming. Acta Physica Sinica, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [11] Meng Zhi-Jun, Wang Li-Feng, Lü Ming-Yun, Wu Zhe. Influence of curvature on transmission properties of finite curved slot arrays. Acta Physica Sinica, 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [12] Cen Min, Zhang Yue-Guang, Chen Wei-Lan, Gu Pei-Fu. Influences of deposition rate and oxygen partial pressure on residual stress of HfO2 films. Acta Physica Sinica, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [13] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [14] Sun Hao-Liang, Song Zhong-Xiao, Xu Ke-Wei. Effect of substrate constraint on stress-induced cracking of sputtered tungsten thin film. Acta Physica Sinica, 2008, 57(8): 5226-5231. doi: 10.7498/aps.57.5226
    [15] Zhou Xiao-Hua, Zhang Shao-Guang, Yang Ji-Qing, Qu Xue-Min, Liu Yuan-Sheng, Wang Si-Gang. Some new limiting vesicles and typical phase transforms and abruptions processes studied using the spontaneous-curvature model. Acta Physica Sinica, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [16] Kong De-Jun, Zhang Yong-Kang, Chen Zhi-Gang, Lu Jin-Zhong, Feng Ai-Xin, Ren Xu-Dong, Ge Tao. Experimental study of residual stress of galvanized passive film based on XRD. Acta Physica Sinica, 2007, 56(7): 4056-4061. doi: 10.7498/aps.56.4056
    [17] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [18] Di Yu-Xian, Ji Xin-Hua, Hu Ming, Qin Yu-Wen, Chen Jin-Long. Residual stress measurement of porous silicon thin film by substrate curvature method. Acta Physica Sinica, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [19] Qin Qi, Yu Nai-Sen, Guo Li-Wei, Wang Yang, Zhu Xue-Liang, Chen Hong, Zhou Jun-Ming. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition. Acta Physica Sinica, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [20] Shao Shu-Ying, Fan Zheng-Xiu, Shao Jian-Da. Influences of the period of repeating thickness on the stress of alternative high and low refractivity ZrO2/SiO2 multilayers. Acta Physica Sinica, 2005, 54(7): 3312-3316. doi: 10.7498/aps.54.3312
Metrics
  • Abstract views:  6693
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2015
  • Accepted Date:  22 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map