Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Field-like torque-induced tunable zero-field spin-torque nano-oscillator

Guo Xiao-Qing Wang Qiang Xue Hai-Bin

Citation:

Field-like torque-induced tunable zero-field spin-torque nano-oscillator

Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin
PDF
HTML
Get Citation
  • The spin-torque nano-oscillator (STNO), which is a novel type of nano-sized microwave oscillator driven by direct current, is considered as a promising candidate for future radio frequency (RF) transceivers owing to its scalability, nanoscale size and high frequency tunability. However, the potential application of STNO is limited because its stable oscillation requires an external magnetic field. In this work, the influences of the field-like torque and applied current intensity on the stable oscillation of STNO with a perpendicularly magnetized free layer are studied theoretically based on the macrospin model (also known as the single-spin or single-domain model) and the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation in the absence of magnetic field. It is demonstrated numerically that a stable oscillation of STNO can be observed when the ratio between the field-like torque and the spin torque is a negative value and larger than a certain value that depends on the damping coefficient and the current intensity, whose physical mechanism can be understood by the energy balance equation. Moreover, the frequency of stable oscillation of STNO can be modulated by the ratio between the field-like torque and the spin torque and also by the current intensity. Particularly, the larger the absolute value of the ratio between the field-like torque and the spin torque and the smaller the applied current intensity (above the critical current intensity), the more conducive it is to suppressing the formation of second and third oscillation frequencies, thereby enhancing the STNO’s “single-frequency” feature. Our findings provide a theoretical scheme for realizing a frequency tunable zero-field STNO, which may be useful for designing future RF transceivers.
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn
    • Funds: Project supported by the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 20210302123184, 201901D211425, 201601D011015) and the Outstanding Innovative Academic Leader of Higher Learning Institutions of Shanxi Province, China (Grant No. 163220120-S).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Julliere M 1975 Phys. Lett. A 54 225Google Scholar

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar

    [5]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [6]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [7]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nat. Mater. 6 447Google Scholar

    [8]

    Georges B, Grollier J, Cros V, Fert A 2008 Appl. Phys. Lett. 92 232504Google Scholar

    [9]

    Ranjbar M, Drrenfeld P, Haidar M, Iacocca E, Balinskiy M, Le T Q, Fazlali M, Houshang A, Awad A A, Dumas R K, Kerman J 2014 IEEE Magn. Lett. 5 3000504Google Scholar

    [10]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yuasa S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003Google Scholar

    [11]

    Litvinenko A, Iurchuk V, Sethi P, Louis S, Tyberkevych V, Li J, Jenkins A, Ferreira R, Dieny B, Slavin A, Ebels U 2020 Nano Lett. 20 6104Google Scholar

    [12]

    方彬, 曾中明 2014 科学通报 59 1804Google Scholar

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804Google Scholar

    [13]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003Google Scholar

    [14]

    Awad A A, Houshang A, Zahedinejad M, Khymyn R, Åkerman J 2020 Appl. Phys. Lett. 116 232401Google Scholar

    [15]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Phys. Condens. Matter 34 125803Google Scholar

    [16]

    Taniguchi T, Tsunegi S, Kubota H, Imamura H 2014 Appl. Phys. Lett. 104 152411Google Scholar

    [17]

    Taniguchi T, Arai H, Kubota H, Imamura H 2014 IEEE Trans. Magn. 50 1400404Google Scholar

    [18]

    Guo Y Y, Xue H B, Liu Z J 2015 AIP Adv. 5 057114Google Scholar

    [19]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Appl. Phys. 132 094301Google Scholar

    [20]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2015 Appl. Phys. Express 8 083005Google Scholar

    [21]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2016 J. Phys. Soc. Jpn. 85 063802Google Scholar

    [22]

    Guo Y Y, Zhao F F, Xue H B, Liu Z J 2016 Chin. Phys. Lett. 33 037501Google Scholar

    [23]

    Zhao C P, Ma X Q, Huang H B, Liu Z H, Jafri H M, Wang J J, Wang X Y, Chen L Q 2017 Appl. Phys. Lett. 111 082406Google Scholar

    [24]

    郭圆圆, 蒿建龙, 薛海斌, 刘喆颉 2015 64 198502Google Scholar

    Guo Y Y, Hao J L, Xue H B, Liu Z J 2015 Acta Phys. Sin. 64 198502Google Scholar

    [25]

    Kowalska E, Kákay A, Fowley C, Sluka V, Lindner J, Fassbender J, Deac A M 2019 J. Appl. Phys. 125 083902Google Scholar

    [26]

    Shirokura T, Hai P N 2020 J. Appl. Phys. 127 103904Google Scholar

    [27]

    Zhang W, Zhang Y, Jiang B, Fang B, Zhong H, Li H, Zeng Z M, Yan S S, Han G, Liu G, Yu S, Kang S 2021 Appl. Phys. Lett. 118 012405Google Scholar

    [28]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [29]

    Slonczewski J C 2005 Phys. Rev. B 71 024411Google Scholar

    [30]

    Fowley C, Sluka V, Berent K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001Google Scholar

    [31]

    Taniguchi T, Kubota H 2016 Phys. Rev. B 93 174401Google Scholar

    [32]

    Taniguchi T, Ito T, Tsunegi S, Kubota H, Utsumi Y 2017 Phys. Rev. B 96 024406Google Scholar

    [33]

    Taniguchi T, Isogami S, Shiokawa Y, Ishitani Y, Komura E, Sasaki T, Mitani S, Hayashi M 2022 Phys. Rev. B 106 104431Google Scholar

    [34]

    Mancilla-Almonacid D, Arias R E, Escobar R A, Altbir D, Allende S 2018 J. Appl. Phys. 124 162102Google Scholar

    [35]

    Talatchian P, Romera M, Araujo F A, Bortolotti P, Cros V, Vodenicarevic D, Locatelli N, Querlioz D, Grollier J 2020 Phys. Rev. Appl. 13 024073Google Scholar

    [36]

    Zeng L, Xu X J, Chen H H, Zhou Y, Zhang D M, Wang Y J, Zhang Y G, Zhao W S 2020 Appl. Phys. Lett. 117 082404Google Scholar

    [37]

    Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E, Katine J A 2005 Nature 437 389Google Scholar

    [38]

    Mancoff F B, Rizzo N D, Engel B N, Tehrani S 2005 Nature 437 393Google Scholar

    [39]

    Singh H, Konishi K, Bhuktare S, Bose A, Miwa S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Suzuki Y, Tulapurkar A A 2017 Phys. Rev. Appl. 8 064011Google Scholar

    [40]

    Singh H, Bose A, Bhuktare S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Tulapurkar A A 2018 Phys. Rev. Appl. 10 024001Google Scholar

    [41]

    Zeng L, Liu Y, Chen H H, Zhou Y, Zhang D M, Zhang Y G, Zhao W S 2020 Nanotechnology 31 375205Google Scholar

  • 图 1  由三个圆形薄膜组成的自旋转移力矩纳米振荡器的示意图. 该结构上面为厚度d和截面半径r分别为2 nm和60 nm的自由层, 且其磁矩垂直于膜面; 中间为1 nm厚度非磁性材料形成的隧道势垒层; 下面为磁矩平行于膜面的极化层. 在笛卡尔坐标系中, x-y平面和z轴分别平行和垂直于膜面, 而在球坐标系中$\varphi $θ分别为自由层磁矩的方位角和极角

    Figure 1.  Schematic diagram for the considered spin-transfer torque nano-oscillator consisting of the trilayer circular thin films. Here, the top, middle and bottom layers are the 2 nm-thick perpendicular magnetized free layer with a radius of 60 nm, the 1 nm-thick tunnel barrier layer formed by non-magnetic material and the in-plane polarizer pinned layer, respectively. Moreover, in the Cartesian coordinate system, the x-y plane and z-axes of are parallel and perpendicular to the free layer, respectively; while the $\varphi $ and θ in the spherical coordinate system are the azimuth and polar angles of the magnetization of the free layer, respectively.

    图 2  自由层磁矩$x$轴分量${m_x}$的均方根${m_{x{\text{-rms}}}}$在不同阻尼系数下随βI变化的相图 (a) $\alpha = 0.003$; (b) $\alpha = 0.005$; (c) $\alpha = 0.007$; (d) $\alpha = 0.009$

    Figure 2.  Phase diagrams of the root-mean-square value of ${m_{x{\text{-rms}}}}$ of the ${m_x}$ component of the free layer as a function of β and I with different Gilbert damping constants: (a) $\alpha = 0.003$; (b) $\alpha = 0.005$; (c) $\alpha = 0.007$; (d) $\alpha = 0.009$

    图 3  当电流为1.5 mA时, 在一个周期内, 自旋转移力矩提供的平均能量${\overline W_{\text{s}}}$, 阻尼消耗的平均能量${\overline W_\alpha }$, 以及其平均能量之差${\overline W_{\text{s}}} - {\overline W_\alpha }$随自由层磁矩z分量的变化 (a) β = 0; (b) β = –0.2; (c) β = 0.2

    Figure 3.  In a precession period, the average work done by the spin-transfer torque ${\overline W_{\text{s}}}$, the average energy dissipation due to the damping ${\overline W_\alpha }$, and the energy difference between ${\overline W_{\text{s}}}$ and ${\overline W_\alpha }$ as a function of the z component of the free layer magnetization at given current intensity I = 1.5 Ma: (a) β = 0; (b) β = –0.2; (c) β = 0.2.

    图 4  (a) 自旋转移力矩纳米振荡器的振幅和频率对β的依赖关系; (b), (c) 自由层磁矩的x分量和z分量在不同类场矩β情形下的稳态振荡情况(I = 1.5 mA)

    Figure 4.  (a) Dependences of the amplitude and frequency of spin-transfer torque nano-oscillator on the β; (b), (c) the x and the z components of the free layer magnetization as a function of time for the different ratios between the spin-tranfer torque and the field-like torque β (I = 1.5 mA).

    图 5  α = 0.005时, 自旋转移力矩纳米振荡器稳定自激振荡的频率(a)和振幅(b)随βI变化的相图

    Figure 5.  Phase diagrams of the frequency (a) and amplitude (b) of stable oscillation of spin-transfer torque nano-oscillator as a function of the β and the I at α = 0.005.

    图 6  (a)自旋转移力矩纳米振荡器的振幅和频率对施加电流强度I的依赖关系; (b), (c) 自由层磁矩的x分量和z分量在不同电流强度情形下的稳态振荡情况(β = –0.2)

    Figure 6.  (a) Dependences of the amplitude and frequency of spin-transfer torque nano-oscillator on the applied current intensity I; (b), (c) the x and the z components of the free layer magnetization as a function of time for the different values of current intensity (β = –0.2).

    Baidu
  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Julliere M 1975 Phys. Lett. A 54 225Google Scholar

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar

    [5]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [6]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [7]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nat. Mater. 6 447Google Scholar

    [8]

    Georges B, Grollier J, Cros V, Fert A 2008 Appl. Phys. Lett. 92 232504Google Scholar

    [9]

    Ranjbar M, Drrenfeld P, Haidar M, Iacocca E, Balinskiy M, Le T Q, Fazlali M, Houshang A, Awad A A, Dumas R K, Kerman J 2014 IEEE Magn. Lett. 5 3000504Google Scholar

    [10]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yuasa S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003Google Scholar

    [11]

    Litvinenko A, Iurchuk V, Sethi P, Louis S, Tyberkevych V, Li J, Jenkins A, Ferreira R, Dieny B, Slavin A, Ebels U 2020 Nano Lett. 20 6104Google Scholar

    [12]

    方彬, 曾中明 2014 科学通报 59 1804Google Scholar

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804Google Scholar

    [13]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003Google Scholar

    [14]

    Awad A A, Houshang A, Zahedinejad M, Khymyn R, Åkerman J 2020 Appl. Phys. Lett. 116 232401Google Scholar

    [15]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Phys. Condens. Matter 34 125803Google Scholar

    [16]

    Taniguchi T, Tsunegi S, Kubota H, Imamura H 2014 Appl. Phys. Lett. 104 152411Google Scholar

    [17]

    Taniguchi T, Arai H, Kubota H, Imamura H 2014 IEEE Trans. Magn. 50 1400404Google Scholar

    [18]

    Guo Y Y, Xue H B, Liu Z J 2015 AIP Adv. 5 057114Google Scholar

    [19]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Appl. Phys. 132 094301Google Scholar

    [20]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2015 Appl. Phys. Express 8 083005Google Scholar

    [21]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2016 J. Phys. Soc. Jpn. 85 063802Google Scholar

    [22]

    Guo Y Y, Zhao F F, Xue H B, Liu Z J 2016 Chin. Phys. Lett. 33 037501Google Scholar

    [23]

    Zhao C P, Ma X Q, Huang H B, Liu Z H, Jafri H M, Wang J J, Wang X Y, Chen L Q 2017 Appl. Phys. Lett. 111 082406Google Scholar

    [24]

    郭圆圆, 蒿建龙, 薛海斌, 刘喆颉 2015 64 198502Google Scholar

    Guo Y Y, Hao J L, Xue H B, Liu Z J 2015 Acta Phys. Sin. 64 198502Google Scholar

    [25]

    Kowalska E, Kákay A, Fowley C, Sluka V, Lindner J, Fassbender J, Deac A M 2019 J. Appl. Phys. 125 083902Google Scholar

    [26]

    Shirokura T, Hai P N 2020 J. Appl. Phys. 127 103904Google Scholar

    [27]

    Zhang W, Zhang Y, Jiang B, Fang B, Zhong H, Li H, Zeng Z M, Yan S S, Han G, Liu G, Yu S, Kang S 2021 Appl. Phys. Lett. 118 012405Google Scholar

    [28]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [29]

    Slonczewski J C 2005 Phys. Rev. B 71 024411Google Scholar

    [30]

    Fowley C, Sluka V, Berent K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001Google Scholar

    [31]

    Taniguchi T, Kubota H 2016 Phys. Rev. B 93 174401Google Scholar

    [32]

    Taniguchi T, Ito T, Tsunegi S, Kubota H, Utsumi Y 2017 Phys. Rev. B 96 024406Google Scholar

    [33]

    Taniguchi T, Isogami S, Shiokawa Y, Ishitani Y, Komura E, Sasaki T, Mitani S, Hayashi M 2022 Phys. Rev. B 106 104431Google Scholar

    [34]

    Mancilla-Almonacid D, Arias R E, Escobar R A, Altbir D, Allende S 2018 J. Appl. Phys. 124 162102Google Scholar

    [35]

    Talatchian P, Romera M, Araujo F A, Bortolotti P, Cros V, Vodenicarevic D, Locatelli N, Querlioz D, Grollier J 2020 Phys. Rev. Appl. 13 024073Google Scholar

    [36]

    Zeng L, Xu X J, Chen H H, Zhou Y, Zhang D M, Wang Y J, Zhang Y G, Zhao W S 2020 Appl. Phys. Lett. 117 082404Google Scholar

    [37]

    Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E, Katine J A 2005 Nature 437 389Google Scholar

    [38]

    Mancoff F B, Rizzo N D, Engel B N, Tehrani S 2005 Nature 437 393Google Scholar

    [39]

    Singh H, Konishi K, Bhuktare S, Bose A, Miwa S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Suzuki Y, Tulapurkar A A 2017 Phys. Rev. Appl. 8 064011Google Scholar

    [40]

    Singh H, Bose A, Bhuktare S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Tulapurkar A A 2018 Phys. Rev. Appl. 10 024001Google Scholar

    [41]

    Zeng L, Liu Y, Chen H H, Zhou Y, Zhang D M, Zhang Y G, Zhao W S 2020 Nanotechnology 31 375205Google Scholar

  • [1] Wang Kang-Ying, Ma Cai-Yuan, Yu Hui-Min, Zhang Hai-Tao, Cen Jian-Yong, Wang Ying-Ying, Pan Jun-Xing, Zhang Jin-Jun. The self-assembly behavior of polymer/nanorods hybrid system under oscillation field. Acta Physica Sinica, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [2] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] Zang Yu-Chen, Su Chang, Wu Peng-Fei, Lin Wei-Jun. Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam. Acta Physica Sinica, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [4] Zhao Peng-Ju, Kong Fei, Li Rui, Shi Fa-Zhan, Du Jiang-Feng. Nanoscale zero-field detection based on single solid-state spins in diamond. Acta Physica Sinica, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [5] Xu Bi-Rong, Wang Guang-Yi. Meminductive Wein-bridge chaotic oscillator. Acta Physica Sinica, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [6] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [7] Gao Jie, Zhang Min-Cang. Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential. Acta Physica Sinica, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [8] Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie. Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator. Acta Physica Sinica, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [9] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [10] Jin Wei, Wan Zhen-Mao, Liu Yao-Wen. Nonlinear magnetization dynamics excited by the spin-transfer torque effect. Acta Physica Sinica, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [11] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Improving the stability of the Ti: sapphire oscillator. Acta Physica Sinica, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [12] Zhan Jie-Min, Li Yu-Xiang. . Acta Physica Sinica, 2002, 51(4): 828-834. doi: 10.7498/aps.51.828
    [13] Yao Chun-Mei, Guo Guang-Can. . Acta Physica Sinica, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [14] WANG YONG-JIU, TANG ZHI-MING. THE ORBITAL PRECESSION EFFECT IN THE MASS QUADRUPOLE MOMENT FIELD. Acta Physica Sinica, 2001, 50(12): 2284-2288. doi: 10.7498/aps.50.2284
    [15] LI YONG-MIN, FAN QIAO-YUN, ZHANG KUAN-SHOU, XIE CHANG-DE, PENG KUN-CHI. QUADRATURE PHASE-SQUEEZING OF PUMP FIELD REFLECTED FROM TRIPLY RESONANT QUASI-PHASE-MATCHED OPTICAL PARAMETRIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [16] DU MAO-LU, LI ZHAO-MIN, KAN JIA-JUN. . Acta Physica Sinica, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [17] LOU CHIE-HUNG, HUANG WU-HAN. CONTRIBUTION OF SPIN-SPIN INTERACTION TO THE ZERO-FIELD SPLITTING OF GROUND STATE IN RUBY. Acta Physica Sinica, 1965, 21(12): 1962-1967. doi: 10.7498/aps.21.1962
    [18] PING-CHUAN FENG, PENG-FEI HSU. PHASE COMPENSATION IN POWER OSCILLATORS. Acta Physica Sinica, 1950, 7(6): 59-71. doi: 10.7498/aps.7.59-2
    [19] PENG-FEI HSU, PING-CHUAN FENG. STUDY OF FREQUENCY STABILITY OF ELECTRON- COUPLED OSCILLATORS. Acta Physica Sinica, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
    [20] PING-CHUAN FENG. 强力振荡器之板极效率. Acta Physica Sinica, 1949, 7(4): 249-257. doi: 10.7498/aps.7.43
Metrics
  • Abstract views:  2938
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2023
  • Accepted Date:  01 June 2023
  • Available Online:  14 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回
Baidu
map