搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性磁性分子离子中由激光诱导的超快自旋转移

李春 张少斌 金蔚 Georgios Lefkidis Wolfgang Hübner

引用本文:
Citation:

线性磁性分子离子中由激光诱导的超快自旋转移

李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner

Laser-induced ultrafast spin transfer in linear magnetic molecular ions

Li Chun, Zhang Shao-Bin, Jin Wei, Georgios Lefkidis, Wolfgang Hübner
PDF
导出引用
  • 通过由激光诱导的Λ进程,很多分子磁性体系中涉及的退磁、 自旋翻转或自旋转移过程在理论上得以实现.本文针对具有线性构型的磁性分子离子, 应用量子化学从头计算与自编程序相结合的方法,实现了具有线性构型的双磁性中心分子体系 [Fe-O-Co]+中基于Λ进程的超快自旋转移,且电子占据的转移率达到90%以上. 本文的理论研究结果表明,采用改变磁场方向的方法来增强体系的磁晶各向异性, 可以避免为提高自旋转移能力而额外增加桥接原子在实际应用中的复杂性, 同时也可明显提高电子占据的转移率.
    The demagnetization, spin switching, and spin transfer in magnetic molecular systems can be theoretically achieved via the laser-induced Λ process. In the present work, both quantum chemistry ab initio calculations and our self-written programs are adopted to investigate the spin-transfer behavior of the magnetic molecular ions with linear configuration. It is shown for the first time that the Λ process based ultrafast spin transfer can be achieved in a linear two-magnetic-center molecular ion [Fe-O-Co]+, and the fidelity of the population transfer exceeds 90%. The present theoretical prediction shows that the magnetocrystalline anisotropy of a molecular system can be enhanced by properly adjusting the direction of the applied magnetic field, which is shown to be a better way to improve the spin-transfer ability of the molecular system than by increasing additional bridging atoms since it could avoid the complexity of the latter situation in practical applications. At the same time, the present spin-transfer scenario indicates that the fidelity of the population transfer could also be evidently increased.
    • 基金项目: 国家自然科学基金(批准号: 11002109);高等学校博士学科点专项科研基金(批准号: 20106102120028); 西北工业大学基础研究基金和"翱翔之星"计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11002109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106102120028), the NPU Foundation for Fundamental Research, and the NPU Ao-Xiang Star Project.
    [1]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250

    [2]

    Koopmans B, Ruigrok J J M, Dalla Longa F, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207

    [3]

    Chovan J, Kavousanaki E G, Perakis I E 2006 Phys. Rev. Lett. 96 057402

    [4]

    Koopmans B, Malinowski J, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259

    [5]

    Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499

    [6]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515

    [7]

    Boeglin C, Beaurepaire E, Halté V, López-Flores V, Stamm C, Pontius N, Dürr H A, Bigot J Y 2010 Nature 465 458

    [8]

    Guo L J, Wüstenberg J P, Oleksiy A, Bauer M, Aeschlimann M 2005 Acta Phys. Sin. 54 3200 (in Chinese) [郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann 2005 54 3200]

    [9]

    Sukhov A, Berakdar J 2009 Phys. Rev. Lett. 102 057204

    [10]

    Atxitia U, Chubykalo-Fesenko O, Chantrell R W, Nowak U, Rebei A 2009 Phys. Rev. Lett. 102 057203

    [11]

    Hübner W, Zhang G P 1998 Phys. Rev. B 58 R5920

    [12]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025

    [13]

    Gómez-Abal R, Ney O, Satitkovitchai K, Hübner W 2004 Phys. Rev. Lett. 92 227402

    [14]

    Shen Y R, Bloembergen N 1966 Phys. Rev. 143 372

    [15]

    Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418

    [16]

    Li C, Hartenstein T, Lefkidis G, Hübner W 2009 Phys. Rev. B 79 180413(R)

    [17]

    Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006

    [18]

    Lefkidis G, Zhang G P, Hübner W 2009 Phys. Rev. Lett. 103 217401

    [19]

    Lefkidis G, Li C, Pal G, Blug M, Kelm H, Krüger H J, Hübner W 2011 J. Phys. Chem. A 115 1774

    [20]

    Hübner W, Kersten S P, Lefkidis G 2009 Phys. Rev. B 79 184431

    [21]

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802 (in Chinese) [李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner 2011 60 017802]

    [22]

    Li C, Zhang S, Jin W, Xiang H, Lefkidis G, Hübner W 2012 J. Magn. Magn. Mater. http: // dx.doi.org/ 10.1016/ j.jmmm. 2012. 07.007

    [23]

    Li C, Jin W, Xiang H, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415

    [24]

    Frisch M J 2004 Gaussian 03 Revision B.03 gaussian Inc. (Wallingford CT)

    [25]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329

  • [1]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250

    [2]

    Koopmans B, Ruigrok J J M, Dalla Longa F, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207

    [3]

    Chovan J, Kavousanaki E G, Perakis I E 2006 Phys. Rev. Lett. 96 057402

    [4]

    Koopmans B, Malinowski J, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259

    [5]

    Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499

    [6]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515

    [7]

    Boeglin C, Beaurepaire E, Halté V, López-Flores V, Stamm C, Pontius N, Dürr H A, Bigot J Y 2010 Nature 465 458

    [8]

    Guo L J, Wüstenberg J P, Oleksiy A, Bauer M, Aeschlimann M 2005 Acta Phys. Sin. 54 3200 (in Chinese) [郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann 2005 54 3200]

    [9]

    Sukhov A, Berakdar J 2009 Phys. Rev. Lett. 102 057204

    [10]

    Atxitia U, Chubykalo-Fesenko O, Chantrell R W, Nowak U, Rebei A 2009 Phys. Rev. Lett. 102 057203

    [11]

    Hübner W, Zhang G P 1998 Phys. Rev. B 58 R5920

    [12]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025

    [13]

    Gómez-Abal R, Ney O, Satitkovitchai K, Hübner W 2004 Phys. Rev. Lett. 92 227402

    [14]

    Shen Y R, Bloembergen N 1966 Phys. Rev. 143 372

    [15]

    Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418

    [16]

    Li C, Hartenstein T, Lefkidis G, Hübner W 2009 Phys. Rev. B 79 180413(R)

    [17]

    Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006

    [18]

    Lefkidis G, Zhang G P, Hübner W 2009 Phys. Rev. Lett. 103 217401

    [19]

    Lefkidis G, Li C, Pal G, Blug M, Kelm H, Krüger H J, Hübner W 2011 J. Phys. Chem. A 115 1774

    [20]

    Hübner W, Kersten S P, Lefkidis G 2009 Phys. Rev. B 79 184431

    [21]

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802 (in Chinese) [李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner 2011 60 017802]

    [22]

    Li C, Zhang S, Jin W, Xiang H, Lefkidis G, Hübner W 2012 J. Magn. Magn. Mater. http: // dx.doi.org/ 10.1016/ j.jmmm. 2012. 07.007

    [23]

    Li C, Jin W, Xiang H, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415

    [24]

    Frisch M J 2004 Gaussian 03 Revision B.03 gaussian Inc. (Wallingford CT)

    [25]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329

  • [1] 计晨. 原子兰姆位移与超精细结构中的核结构效应.  , 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [2] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦.  , 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [3] 卢欣, 谢孟琳, 刘景, 金蔚, 李春, GeorgiosLefkidis, WolfgangHübner. FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究.  , 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [4] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究.  , 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [5] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法.  , 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [6] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究.  , 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [7] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为.  , 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [8] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [9] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [10] 田文, 袁鹏飞, 禹卓良, 陶斌凯, 侯森耀, 叶聪, 张振华. 掺杂六角形石墨烯电子输运特性的研究.  , 2015, 64(4): 046102. doi: 10.7498/aps.64.046102
    [11] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究.  , 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [12] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究.  , 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] 金硕, 孙璐. 带有碳杂质的钨中氢稳定性的第一性原理研究.  , 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [14] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算.  , 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [15] 李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner. 磁性纳米结构中由激光引起的超快自旋动力学研究.  , 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [16] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化.  , 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [17] 原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦. BeO高压相变和声子谱的第一性原理计算.  , 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [18] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究.  , 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [19] 李群祥, 杨金龙, 李震宇, 侯建国, 朱清时. 第一过渡金属酞菁分子的电子结构的第一性原理计算.  , 2001, 50(10): 1877-1883. doi: 10.7498/aps.50.1877
    [20] 龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究.  , 1995, 44(6): 885-896. doi: 10.7498/aps.44.885
计量
  • 文章访问数:  6295
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-13
  • 修回日期:  2012-02-22
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map