Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin conversion of positronium of ZIFs nanocrystalline

Li Chong-Yang Li Meng-De Wang Mei Li Tao Liu Jian-Dang Ye Bang-Jiao Chen Zhi-Quan

Citation:

Spin conversion of positronium of ZIFs nanocrystalline

Li Chong-Yang, Li Meng-De, Wang Mei, Li Tao, Liu Jian-Dang, Ye Bang-Jiao, Chen Zhi-Quan
PDF
HTML
Get Citation
  • ZIFs crystal is composed of imidazolidyl bridging single metal ions, and its structure can be adjusted by flexibly selecting functional groups of imidazolidyl ligands, thereby possessing more new properties and functions. While, the pore structure and chemical environment of ZIFs crystals are closely related to their properties. In this work, ZIF nanocrystals are prepared by static reaction. The X-ray diffraction results confirm that the prepared crystals are typical of ZIF-8 crystals, and the regular rhomboidal structure can be observed by scanning electron microscopy. The N2 adsorption-desorption test indicates that the ZIF crystal exhibits the larger specific surface area (2966.26 m2/g) and pore volume (3.01 cm3/g) . With the increase of Co content, specific surface area and pore volume of ZIFs crystal decrease, while the pore size remains nearly unchanged (around 12 Å). However, the pore size distribution calculated by N2 adsorption/desorption isothermal curve does not show the ultra-micropore information of the six-membered ring composed of imidazole ligands (3.4 Å). The microstructure and surface properties of the crystal are investigated by positron annihilation lifetime and Doppler broadening. The positron lifetime spectrum has four components. The longer lifetimes $ {\tau }_{3} $ and $ {\tau }_{4} $ are the annihilation lifetimes of o-Ps in the microporous region and the regular angular gap of the crystal, respectively. With the increase of Co content, the lifetime $ {\tau }_{3} $ hardly changes, while the longer lifetime $ {\tau }_{4} $ decreases from 30.89 ns to 12.57 ns, and the corresponding intensities $ {I}_{3} $ and $ {I}_{4} $ decrease sharply from 12.93% and 8.15% to 3.68% and 0.54%, respectively. With the increase of Co content, the S parameter obtained by doppler broadening shows a continuous upward trend, and the p-Ps intensity also increases gradually, which is mainly due to the self-rotation effect of the electron element. Therefore, the decrease of $ {\tau }_{4} $ in ZIFs nanocrystal is probably due to the self-rotation effect of positronium and Co ion on the crystal surface.
      Corresponding author: Liu Jian-Dang, liujd@ustc.edu.cn ; Chen Zhi-Quan, chenzq@whu.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2019YFA0210000) and the National Natural Science Foundation of China (Grant Nos. 11875248, 12175232).
    [1]

    彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4Google Scholar

    Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4Google Scholar

    [2]

    韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638Google Scholar

    Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638Google Scholar

    [3]

    田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84Google Scholar

    Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84Google Scholar

    [4]

    Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273Google Scholar

    [5]

    He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825Google Scholar

    [6]

    Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233Google Scholar

    [7]

    Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209Google Scholar

    [8]

    Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251Google Scholar

    [9]

    Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946Google Scholar

    [10]

    Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar

    [11]

    马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993Google Scholar

    Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993Google Scholar

    [12]

    Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040Google Scholar

    [13]

    Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108Google Scholar

    [14]

    邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512Google Scholar

    Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512Google Scholar

    [15]

    Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777Google Scholar

    [16]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [17]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [18]

    Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267

    [19]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [20]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [21]

    Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [22]

    Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657Google Scholar

    [23]

    Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445Google Scholar

    [24]

    王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)

    [25]

    Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126Google Scholar

    [26]

    Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051Google Scholar

    [27]

    Davis M E 2002 Nature 417 813Google Scholar

    [28]

    Paulin R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [29]

    Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609Google Scholar

    [30]

    Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954Google Scholar

    [31]

    Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar

    [32]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [33]

    Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802Google Scholar

    [34]

    Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213Google Scholar

    [35]

    Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737Google Scholar

    [36]

    Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423Google Scholar

  • 图 1  ZIF-Zn, ZIF-Co0.05Zn0.95, ZIF-Co0.3Zn0.7和ZIF-Co的X射线衍射谱图

    Figure 1.  X-ray diffraction patterns measured for ZIF-Zn, ZIF-Co0.05Zn0.95, ZIF-Co0.3Zn0.7 and ZIF-Co.

    图 2  ZIF-Co-Zn纳米晶体的扫描电子显微镜图 (a) ZIF-Zn; (b) ZIF-Co0.05Zn0.95; (c) ZIF-Co0.3Zn0.7; (d) ZIF-Co

    Figure 2.  Scanning electron microscopy of ZIF-Co-Zn: (a) ZIF-Zn; (b) ZIF-Co0.05Zn0.95; (c) ZIF-Co0.3Zn0.7; (d) ZIF-Co.

    图 3  ZIF-Co-Zn纳米晶体的(a) N2吸附-脱附等温线(STP, 标准状况)及其(b)孔径分布

    Figure 3.  N2 adsorption and desorption isothermal (a) and its pore size distribution (b) of ZIF-Co-Zn nanocrystalline. STP, standard temperature and pressure.

    图 4  经归一化峰处理后ZIF-Zn, ZIF-Co0.05Zn0.95和ZIF-Co的正电子湮没寿命谱图

    Figure 4.  Peak-normalized positron lifetime spectrum measured for ZIF-Zn, ZIF-Co0.05Zn0.95, ZIF-Co.

    图 5  ZIF-Co-Zn中正电子寿命随Co摩尔含量的变化 (a) $ {\tau }_{1} $, $ {\tau }_{2} $; (b) $ {\tau }_{3} $, $ {\tau }_{4} $

    Figure 5.  Variation of positron lifetime as a function of Co molar content: (a) $ {\tau }_{1} $, $ {\tau }_{2} $; (b) $ {\tau }_{3} $, $ {\tau }_{4} $.

    图 6  ZIF-Co-Zn中o-Ps强度$ {I}_{3} $, $ {I}_{4} $随Co摩尔含量的变化

    Figure 6.  Variation of o-Ps intensity $ {I}_{3} $, $ {I}_{4} $ of ZIF-Co-Zn as a function of Co molar content.

    图 7  ZIF-Co-Zn中多普勒展宽S参数随Co摩尔含量的变化

    Figure 7.  Variation of doppler broadening S-parameter of ZIF-Co-Zn as a function of Co molar content.

    图 8  ZIF-Co-Zn中o-Ps和p-Ps强度随Co摩尔含量的变化

    Figure 8.  Variation of o-Ps and p-Ps intensity of ZIF-Co-Zn as a function of Co molar content.

    图 9  ZIF-Co-Zn中S-W曲线

    Figure 9.  S-W plot measured for the ZIF-Co-Zn porous material.

    表 1  ZIF-Co-Zn纳米晶体中孔结构信息

    Table 1.  Pore structure parameters of ZIF-Co-Zn crystals

    Sample$ {S}_{\mathrm{B}\mathrm{E}\mathrm{T}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$$ {S}_{\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{o}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$$ {V}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $/ $\left({\mathrm{c}\mathrm{m} }^{3}{\cdot\mathrm{g} }^{-1}\right)$
    B12966.262523.563.01
    B22644.632330.562.39
    B33110.942734.412.96
    B43101.992684.392.99
    B53149.702798.982.71
    B63019.412753.461.70
    B72250.852139.031.00
    注: B1—B7依次代表制备的ZIF-Zn, ZIF-Co0.025-Zn0.975, ZIF-Co0.5-Zn0.95, ZIF-Co0.15-Zn0.85, ZIF-Co0.3-Zn0.7, ZIF-Co0.7-Zn0.3及ZIF-Co.
    DownLoad: CSV
    Baidu
  • [1]

    彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4Google Scholar

    Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4Google Scholar

    [2]

    韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638Google Scholar

    Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638Google Scholar

    [3]

    田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84Google Scholar

    Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84Google Scholar

    [4]

    Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273Google Scholar

    [5]

    He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825Google Scholar

    [6]

    Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233Google Scholar

    [7]

    Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209Google Scholar

    [8]

    Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251Google Scholar

    [9]

    Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946Google Scholar

    [10]

    Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar

    [11]

    马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993Google Scholar

    Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993Google Scholar

    [12]

    Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040Google Scholar

    [13]

    Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108Google Scholar

    [14]

    邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512Google Scholar

    Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512Google Scholar

    [15]

    Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777Google Scholar

    [16]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [17]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [18]

    Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267

    [19]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [20]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [21]

    Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [22]

    Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657Google Scholar

    [23]

    Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445Google Scholar

    [24]

    王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)

    [25]

    Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126Google Scholar

    [26]

    Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051Google Scholar

    [27]

    Davis M E 2002 Nature 417 813Google Scholar

    [28]

    Paulin R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [29]

    Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609Google Scholar

    [30]

    Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954Google Scholar

    [31]

    Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar

    [32]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [33]

    Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802Google Scholar

    [34]

    Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213Google Scholar

    [35]

    Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737Google Scholar

    [36]

    Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423Google Scholar

  • [1] Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong. Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials. Acta Physica Sinica, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] Li Chong-Yang, Zhao Bin, Zhang Jun-Wei. Chemical quenching of positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 catalysts. Acta Physica Sinica, 2022, 71(6): 067805. doi: 10.7498/aps.71.20211814
    [3] Li Yu, Luo Jiang-Shan, Wang Zhu, Yang Meng-Sheng, Xing Pi-Feng, Yi Yong, Lei Hai-Le. Nanocrystalline aluminum studied by positron annihilation lifetime spectroscopy. Acta Physica Sinica, 2014, 63(24): 247803. doi: 10.7498/aps.63.247803
    [4] Zhang Yan-Hui, Li Yan-Long, Gu Yue, Chao Yue-Sheng. Investigation of positron annihilation in Fe52Co34Hf7B6Cu1 amorphous alloy treated by intermediate frequency magnetic pulse. Acta Physica Sinica, 2012, 61(16): 167502. doi: 10.7498/aps.61.167502
    [5] Chao Yue-Sheng, Guo Hong, Gao Xiang-Yu, Luo Li-Ping, Zhu Han-Xian. Investigation on annealed Fe43Co43Hf7B6Cu1 amorphous alloy by positron annihilation spectroscopy. Acta Physica Sinica, 2011, 60(1): 017504. doi: 10.7498/aps.60.017504
    [6] Zhang Jie, Chen Xiang-Lei, Hao Ying-Ping, Ye Bang-Jiao, Du Huai-Jiang. Calculation of positron bulk lifetime of sphalerite crystalloid. Acta Physica Sinica, 2010, 59(8): 5828-5832. doi: 10.7498/aps.59.5828
    [7] Hao Ying-Ping, Chen Xiang-Lei, Cheng Bin, Kong Wei, Xu Hong-Xia, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation lifetime study of SmFeAsO superconductor. Acta Physica Sinica, 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [8] Li Zhuo-Xin, Wang Dan-Ni, Wang Bao-Yi, Xue De-Sheng, Wei Long, Qin Xiu-Bo. Study of annihilation behavior of positronium in porous silicon in different atmospheres. Acta Physica Sinica, 2010, 59(9): 6647-6652. doi: 10.7498/aps.59.6647
    [9] Wu Shi-Liang, Chen Ye-Qing, Wu Yi-Chu, Wang Shao-Jie, Wen Xi-Yu, Zhai Tong-Guang. Positron annihilation study of hot band of a continuous cast AA 2037 Al alloy after annealing. Acta Physica Sinica, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [10] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [11] Wang Bo, Li Shu-Jing, Chang Hong, Wu Hai-Bin, Xie Chang-De, Wang Hai. Effect of one-photon detuning on light speed reduction in a three-level Λ-type atomic system. Acta Physica Sinica, 2005, 54(9): 4136-4140. doi: 10.7498/aps.54.4136
    [12] LI LI-JUN, WANG ZUO-XIN, WU JIN-LEI. POSITRON ANNIHILATION TIME STUDY OF DEFECTS IN Hg1-xCdxTe SINGLE CRYSTALS. Acta Physica Sinica, 1998, 47(5): 844-850. doi: 10.7498/aps.47.844
    [13] WU YI-CHU, ZHU ZHI-YING, YOSHIKO ITOH, YASUO ITO. POSITRON LIFETIME AND DOPPLER BROADENING TECHNIQUES STUDIES ON THE INTERACTION BETWEEN HYDROGEN AND DEFECTS IN NICKEL. Acta Physica Sinica, 1997, 46(2): 406-410. doi: 10.7498/aps.46.406
    [14] MA JIAN-GUO, GUO YING-HUAN, WANG YUN-YU. ANALYSIS OF POSITRON ANNIHILATION LIFETIME SPECTRUM BY FAST FOURIER TRANSFORM. Acta Physica Sinica, 1994, 43(4): 547-554. doi: 10.7498/aps.43.547
    [15] HAN RONG-DIAN, GUO XUE-ZHE, WENG HUI-MIN, SHI XING-JUN, XIE LI. PRODUCTION OF VACUUM POSITRONIUM ATOMS. Acta Physica Sinica, 1991, 40(2): 205-209. doi: 10.7498/aps.40.205
    [16] WANG SHAO-JIE, Y. C. JEAN. TEMPERATURE DEPENDENCE OF CONDENSED METHANE STUDIED BY POSITRON LIFETIME MEASUREMENTS. Acta Physica Sinica, 1990, 39(7): 106-111. doi: 10.7498/aps.39.106
    [17] WANG YUN-YU, PAN XIAO-LIANG, LEI ZHEN-XI, YANG JU-HUA. STUDY OF FAST IONIC CONDUCTOR BY POSITRON ANNIHILATION. Acta Physica Sinica, 1987, 36(4): 514-517. doi: 10.7498/aps.36.514
    [18] YANG HONG-NING, LIN BU-ZHENG, FANG JUN-XIN. A STUDY ON THE RELAXATION MECHANISM OF THE QUASI-POSITRONIUM. Acta Physica Sinica, 1986, 35(6): 697-703. doi: 10.7498/aps.35.697
    [19] SU FANG, YU WEI-ZHONG, DAI DAO-YANG, ZHAO ZONG-YUAN. POSITRON LIFETIME SPECTRA AND SCANNING ELECTRON MICROSCOPE INVESTIGATIONS DURING THE CRYSTAL-LIZATION PROCESS OF AMORPHOUS IONIC CONDUCTOR B2O3-0.7Li2O-0.7LiCl-xAl2O3. Acta Physica Sinica, 1985, 34(5): 622-627. doi: 10.7498/aps.34.622
    [20] HE YUAN-JIN, CAO BI-SONG. THE FOURIER TRANSFORM METHOD FOR THE ANALYSIS OF POSITRON LIFETIME SPECTRA. Acta Physica Sinica, 1984, 33(12): 1745-1752. doi: 10.7498/aps.33.1745
Metrics
  • Abstract views:  4316
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2022
  • Accepted Date:  17 April 2022
  • Available Online:  25 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回
Baidu
map