-
Scale effect and topological frustration can form magnetic order in the finite graphene structures (graphene nanoflakes (GNFs)). In this paper, the GNFs that can generate large net electron spin or electron spin antiferromagnetic coupling between local regions of net electron spins are classified reasonably. Representative special GNF configurations are proposed to be effectively used as fundamental logic gate devices for ultra-fast high density spintronics, and theoretically investigated by the first-principles electron structure calculations based on spin-polarized density functional theory. The first-principles calculations are performed by utilizing all-electron numerical-orbital scheme in the M11-L form of meta-GGA exchange-correlation functional. The energy spectrum of singly occupied states and the isodensity surface of total spin distribution indicate evidently that spin-single-state electrons are localized on two sides of a representative double-triangle GNF and the spin polarizations of two GNF segments are in opposite directions, resulting in antiferromagnetic coupling, which is consistent with the results derived from the graph theory and Lieb theorem. The energy of antiferromagnetic spin-coupled state is 55 meV lower than that of ferromagnetic spin-coupled state, which is obviously higher than the thermodynamic threshold of the minimum energy dissipation at room temperature. The spin coupling energy of the double triangle GNF increases with the scaling of GNF dimension increasing. The magnetic coupling strength of the double triangle GNF with and without mirror symmetry approach to the maximum stable values of 50 meV and 200 meV respectively, which are remarkably higher that of quantum dots and transition metal atom systems. Due to the fact that the spin coupling strength of the GNF logic gate spin device can reach 200 meV, it can operate normally at ambient temperature with an error rate of 0.001 which can be easily improved by an error correction technique. The calculation results demonstrate that the proposed GNF logic gate can finely operate at ambient temperature with significantly low and correctable error rate. Recent experimental studies show that graphene nanodevices on a scale of only a few nanometers can be successfully fabricated by etching technique of electron beam and scanning probe. Furthermore, the properties of GNF spin logic devices are not sensitive to intrinsic defects. The triangular GNF with n carbon rings has only (n+2)2-3 carbon atoms, while it can endure n-1 internal defects, thus persisting in non-bond states and local magnetic moments. It is suggested that the full spin logic gate devices based on GNF can be realized by using the current advanced nano-processing technology.
-
Keywords:
- graphene nanoflake /
- spin coupling /
- first-principles calculation /
- logic gate
[1] Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T 2007 Phys. Rev. Lett. 98 187204
[2] Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408
[3] Yazyev O V 2008 Phys. Rev. Lett. 101 037203
[4] Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502
[5] Fernández-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204
[6] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[7] Ezawa M 2007 Phys. Rev. B 76 245415
[8] Palacios J J, Fernandez-Rossier J, Brey L 2008 Phys. Rev. B 77 195428
[9] Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702
[10] Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241
[11] Rajca A, Wongsriratanakul J, Rajca S 2001 Science 294 1503
[12] Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
[13] Bhowmick S, Shenoy V B 2008 J. Chem. Phys. 128 244717
[14] Chappert C, Fert A, van Dau F N 2007 Nature Mater. 6 813
[15] Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N D 2007 Nature 445 410
[16] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571
[17] Atulasimha J, Bandyopadhyay S 2016 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (America: Wiley) pp221-257
[18] Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯 2016 65 098501]
[19] Zhang Z, Zhang Y, Zheng Z, Wang G, Su L, Zhang Y, Zhao W 2017 AIP Adv. 7 055925
[20] Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 (in Chinese)[韩秀峰, 万蔡华 2018 67 127201]
[21] Xiao C J, Dong J M 2014 J. Nanjing Univ. (Nat. Sci.) 50 14 (in Chinese)[肖灿俊, 董锦明 2014 南京大学学报(自然科学) 50 14]
[22] Sun J T, Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese)[孙家涛, 孟胜 2015 64 187301]
[23] Köhler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23
[24] Andzelm J, King-smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321
[25] Peverati R, Truhlar D G 2012 J. Phys. Chem. Lett. 3 117
[26] Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205
[27] Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192
[28] Fajtlowicz S, John P E, Sach H 2005 Croat. Chem. Acta 78 195
[29] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[30] Brey L, Fertig H A, Das Sarma S 2007 Phys. Rev. Lett. 99 116802
[31] Wimmer M, Adagideli İ, Berber S, Tománek D, Richter K 2008 Phys. Rev. Lett. 100 177207
[32] Agarwal H, Pramanik S, Bandyopadhyay S 2008 New J. Phys. 10 015001
[33] Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021
[34] Tapaszto L, Dobrik G, Lambin P, Biró L P 2008 Nature Nanotech. 3 397
[35] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill1 E W, Novoselov K S, Geim1 A K 2008 Science 320 356
[36] Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266
-
[1] Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T 2007 Phys. Rev. Lett. 98 187204
[2] Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408
[3] Yazyev O V 2008 Phys. Rev. Lett. 101 037203
[4] Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502
[5] Fernández-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204
[6] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[7] Ezawa M 2007 Phys. Rev. B 76 245415
[8] Palacios J J, Fernandez-Rossier J, Brey L 2008 Phys. Rev. B 77 195428
[9] Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702
[10] Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241
[11] Rajca A, Wongsriratanakul J, Rajca S 2001 Science 294 1503
[12] Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
[13] Bhowmick S, Shenoy V B 2008 J. Chem. Phys. 128 244717
[14] Chappert C, Fert A, van Dau F N 2007 Nature Mater. 6 813
[15] Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N D 2007 Nature 445 410
[16] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571
[17] Atulasimha J, Bandyopadhyay S 2016 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (America: Wiley) pp221-257
[18] Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯 2016 65 098501]
[19] Zhang Z, Zhang Y, Zheng Z, Wang G, Su L, Zhang Y, Zhao W 2017 AIP Adv. 7 055925
[20] Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 (in Chinese)[韩秀峰, 万蔡华 2018 67 127201]
[21] Xiao C J, Dong J M 2014 J. Nanjing Univ. (Nat. Sci.) 50 14 (in Chinese)[肖灿俊, 董锦明 2014 南京大学学报(自然科学) 50 14]
[22] Sun J T, Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese)[孙家涛, 孟胜 2015 64 187301]
[23] Köhler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23
[24] Andzelm J, King-smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321
[25] Peverati R, Truhlar D G 2012 J. Phys. Chem. Lett. 3 117
[26] Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205
[27] Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192
[28] Fajtlowicz S, John P E, Sach H 2005 Croat. Chem. Acta 78 195
[29] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[30] Brey L, Fertig H A, Das Sarma S 2007 Phys. Rev. Lett. 99 116802
[31] Wimmer M, Adagideli İ, Berber S, Tománek D, Richter K 2008 Phys. Rev. Lett. 100 177207
[32] Agarwal H, Pramanik S, Bandyopadhyay S 2008 New J. Phys. 10 015001
[33] Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021
[34] Tapaszto L, Dobrik G, Lambin P, Biró L P 2008 Nature Nanotech. 3 397
[35] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill1 E W, Novoselov K S, Geim1 A K 2008 Science 320 356
[36] Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266
Catalog
Metrics
- Abstract views: 6223
- PDF Downloads: 88
- Cited By: 0