Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation on the influence of gas-particle two-way coupling to the shock fluid in the two-dimensional Lagrangian framework

Chen Da-Wei Sun Hai-Quan Wang Pei Yu Xi-Jun Ma Dong-Jun

Citation:

Numerical investigation on the influence of gas-particle two-way coupling to the shock fluid in the two-dimensional Lagrangian framework

Chen Da-Wei, Sun Hai-Quan, Wang Pei, Yu Xi-Jun, Ma Dong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When an extreme shock wave releases from the free surface of the material, some high speed particulate matters will be ejected from the material body and enter into the background gas. This induced multiphase mixing phenomenon is known as the ejecta mixing. Ejecta mixing is one of the most important problems in the scope of inner explosive compression engineering, and it is also a frontier research subject of the impact dynamics, multiphase fluid dynamics, computational mathematics, etc. The properties of ejecta mixing have been investigated experimently and analytically for many years. However, the results of numerical simuliation are very rare. At present, the ejecta mixing study mainly focuses on the gas particle one-way coupling, that is, the interests of existing works are in the characteristics of the ejected particulate matter transport in the gas. In fact, after a large number of particles entering into the gas, the gas and the particles will interact with each other. So it is necessary to consider the feedback of particles to the gas. In this paper, the theoretical modeling of gas particle two-way coupling, the discrete algorithm of the mathematical model and the particle phase feedback effects on the gas shock wave propagation are investigated in the framework of Lagrangian coordinates. In order to obtain the details of ejecta movement, the particle trajectory model is chosen as the basic model, and then the governing equations including interactions between gas phase and particle phase are derived. For giving the specific calculation formula, the physical meanings of the coupled interaction source terms in the Lagrangian framework are analyzed and a stable numerical scheme is given based on the staggered strategy. We also devise two different computing models of ejecta mixing, the planar and the column configurations, and then the numerical simulations are carried out. The phenomenon of gas shock speed acceleration caused by particle feedback is found, and the distributions of the physical quantities, such as density, velocity, specific internal energy, pressure, in the gas area are changed. Especially for the convergent configuration, the feedback effects will be amplified further by the geometrical shrinkage, which may have a significant influence on the performance of the inner explosion compression, owing to the obvious uniformity variation of the gas flow field and the gas shock rebound in advance. The mathematical model, the numerical method and the new physical findings in this paper, will provide an important theoretical support for the in-depth understanding of the ejecta mixing and also for the solving of the corresponding engineering application problems.
      Corresponding author: Wang Pei, wangpei@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261, 11571002), the Science Foundation of China Academy of Engineering Physics, China (Grant Nos. 2015B0101021, 2015B0201043, 2013A0202011), the National Defense Basic Scientific Research Program of China (Grant No. B1520133015), and the Foundation of State Key Laboratory of Computational Physics, China (Grant No. 42601-03-02).
    [1]

    Asay J, Mix L, Perry F 1976 J. Appl. Phys. 29 284

    [2]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [3]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [4]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [5]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83 177

    [6]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and Shock Waves 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [7]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴 强 2015 64 124701]

    [8]

    Ye Y, Li J, Zhu P F, Qian W X, Liu Z Q, Wang X, Li X Z, Li Z Y, Li Z R, Zhong J 2013 Chin. J. High Pressure Phys. 27 398 (in Chinese) [叶雁, 李军, 朱鹏飞, 钱伟新, 刘振清, 王晓, 李欣竹, 李作友, 李泽仁, 钟杰 2013 高压 27 398]

    [9]

    Chen Y T, Hu H B, Tang T G, Ren G W, Li Q Z, Wang R B, Buttler W T 2012 J. Appl. Phys. 111 053509

    [10]

    Sorenson D S, Minich R W, Romero J L, Tunnell T W, Malone R M 2002 J. Appl. Phys. 92 5830

    [11]

    Elias P, Chapron P, Mondot M 1989 In Shock Compression of Condensed Matter (Elsevier Science Publishers) p783

    [12]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L 1998 Combust. Explo. Shock 34 696

    [13]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [14]

    Furnish M D 2012 Sandia Laboratories SAND2012-1552 C

    [15]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E 2015 Damaged Surface Hydrodynamics (DSH) Flash Report LA-UR-15-22889

    [16]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [17]

    Gu X 2004 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [顾旋 2004 硕士学位论文(哈尔滨: 哈尔滨工程大学)]

    [18]

    Xiong Q G, Aramideh S, Passalacqua A, Kong S C 2015 J. Heat. Trans. 137 061008

    [19]

    Yu H 2003 Explosion and Shock Waves 23 493 (in Chinese) [喻虹 2003 爆炸与冲击 23 493]

    [20]

    Moshfegh A, Shams M, Ebrahimi R, Farnia M A 2009 Int. J. Heat Fluid Fl. 30 1142

  • [1]

    Asay J, Mix L, Perry F 1976 J. Appl. Phys. 29 284

    [2]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [3]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [4]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [5]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83 177

    [6]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and Shock Waves 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [7]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴 强 2015 64 124701]

    [8]

    Ye Y, Li J, Zhu P F, Qian W X, Liu Z Q, Wang X, Li X Z, Li Z Y, Li Z R, Zhong J 2013 Chin. J. High Pressure Phys. 27 398 (in Chinese) [叶雁, 李军, 朱鹏飞, 钱伟新, 刘振清, 王晓, 李欣竹, 李作友, 李泽仁, 钟杰 2013 高压 27 398]

    [9]

    Chen Y T, Hu H B, Tang T G, Ren G W, Li Q Z, Wang R B, Buttler W T 2012 J. Appl. Phys. 111 053509

    [10]

    Sorenson D S, Minich R W, Romero J L, Tunnell T W, Malone R M 2002 J. Appl. Phys. 92 5830

    [11]

    Elias P, Chapron P, Mondot M 1989 In Shock Compression of Condensed Matter (Elsevier Science Publishers) p783

    [12]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L 1998 Combust. Explo. Shock 34 696

    [13]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [14]

    Furnish M D 2012 Sandia Laboratories SAND2012-1552 C

    [15]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E 2015 Damaged Surface Hydrodynamics (DSH) Flash Report LA-UR-15-22889

    [16]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [17]

    Gu X 2004 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [顾旋 2004 硕士学位论文(哈尔滨: 哈尔滨工程大学)]

    [18]

    Xiong Q G, Aramideh S, Passalacqua A, Kong S C 2015 J. Heat. Trans. 137 061008

    [19]

    Yu H 2003 Explosion and Shock Waves 23 493 (in Chinese) [喻虹 2003 爆炸与冲击 23 493]

    [20]

    Moshfegh A, Shams M, Ebrahimi R, Farnia M A 2009 Int. J. Heat Fluid Fl. 30 1142

  • [1] Zuo Xin-Yi, Lei Zhao-Kang, Wu Yao-Rong, Wang Cheng-Hui. A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [2] Zhao Ning-Ning, Xiao Xin-Yu, Fan Feng-Xian, Su Ming-Xu. Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [3] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Chen Bin-Bin. Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture. Acta Physica Sinica, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [4] Wang Si-Qiang, Ji Shun-Ying. Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method. Acta Physica Sinica, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [5] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Na Xu-Dong. Numerical investigation of one-dimensional steady detonation wave characteristics for magnesium particle-air mixture. Acta Physica Sinica, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [6] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [7] Hao Shi-Feng, Lou Mao-Yuan, Yang Shi-Fang, Li Chao, Kong Zhao-Lin, Qiu Wei. Semi-analytical solution of the dry baroclinic Lagrange primitive equation and numerical experiment of a non-linear density current. Acta Physica Sinica, 2015, 64(19): 194702. doi: 10.7498/aps.64.194702
    [8] Dong Jian-Jun, Cao Zhu-Rong, Yang Zheng-Hua, Cheng Bo-Lun, Huang Tian-Xuan, Den Bo, Liu Sheng-Ye, Jiang Shao-En, Ding Yong-Kun, Yi Sheng-Zheng, Mu Bao-Zhong. Measurement of implosion trajectory for hohlraum-radiative-driven. Acta Physica Sinica, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [9] Jing Long-Fei, Huang Tian-Xuan, Jiang Shao-En, Chen Bo-Lun, Pu Yu-Dong, Hu Feng, Cheng Shu-Bo. Model analysis of experiments of implosion symmetry on Shenguang-Ⅱ and Shenguang-Ⅲ prototype laser facilities. Acta Physica Sinica, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [10] Tao Wei-Jun, Huan Shi. Study on Lagrangian analysis for solving the stress gradually along the time. Acta Physica Sinica, 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [11] Liu Lei, Fei Jian-Fang, Zhang Li-Biao, Huang Xiao-Gang, Cheng Xiao-Ping. New parameterization of wave-current interaction used in a two-way coupled model under typhoon conditions. Acta Physica Sinica, 2012, 61(5): 059201. doi: 10.7498/aps.61.059201
    [12] Yang Ling-Xiao, Zhao Xiao-Mei, Gao Zi-You, Zheng Jian-Feng. Bi-directional pedestrian flow model with traffic convention. Acta Physica Sinica, 2011, 60(10): 100501. doi: 10.7498/aps.60.100501
    [13] Gao Hong-Li, Chen You-Chuan, Zhao Yong-Zhi, Zheng Jin-Yang. Simulation of mixing process for size-type binary wet particulate systems in a rotating horizontal drum by discrete element method. Acta Physica Sinica, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [14] Liu Fu-Cai, Zang Xiu-Feng, Song Jia-Qiu. Anti-synchronism of the bidirectional coupled chaotic system. Acta Physica Sinica, 2009, 58(6): 3765-3771. doi: 10.7498/aps.58.3765
    [15] Liu Jian-Dong, Yu You-Ming. A TCML-based spatiotemporal chaotic one-way Hash function with changeable-parameter. Acta Physica Sinica, 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
    [16] Zheng Rong-Sen, Tan Hui-Li, Kong Ling-Jiang, Liu Mu-Ren. The traffic flow of two-lane system with vehicle mixing. Acta Physica Sinica, 2005, 54(10): 4614-4620. doi: 10.7498/aps.54.4614
    [17] Zhang Ping-Wei, Tang Guo-Ning, Luo Xiao-Shu. Generalized synchronization of bidirectionally coupled chaos systems. Acta Physica Sinica, 2005, 54(8): 3497-3501. doi: 10.7498/aps.54.3497
    [18] DU MAO-LU, LI ZHAO-MIN, KAN JIA-JUN. . Acta Physica Sinica, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [19] DU MAO-LU, CHEN JIA-JUN, CHEN KANG-SHENG. SPIN-ORBIT COUPLING PARAMETER MODEL OF g FACTOR FOR Ni2+-6X-CLUSTERS. Acta Physica Sinica, 1992, 41(7): 1174-1181. doi: 10.7498/aps.41.1174
    [20] СПИН-ОРБИТАЛЬНАЯ СВЯЗЬ В ЯДРЕ. Acta Physica Sinica, 1958, 14(6): 469-478. doi: 10.7498/aps.14.469
Metrics
  • Abstract views:  5822
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2015
  • Accepted Date:  04 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map