Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube

Liu Yong-Bo Jian Yong-Jun

Citation:

Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube

Liu Yong-Bo, Jian Yong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Analytical investigations are performed for pressure driven flow of an electrically conducting, incompressible and viscous fluid in a polyelectrolyte-grafted nanotube by using Bessel functions. Nanofluidic tubes whose walls are covered by polyelectrolyte materials, named the fixed charge layer (FCL), are identified as soft nanotubes. The flow relies on an externally imposed pressure gradient and an induced reverse electroosmotic force produced by the streaming potential field which is spontaneously developed due to the ionic charge migration with the fluid flow. Many parametrical ranges are determined to ensure the validity of Debye-Hckel approximation. The analysis is based on the solutions of the linearized Poissson-Boltzmann equation and modified Navier-Stokes equation. To obtain the streaming potential, we use a numerical treatment to solve an integral equation governing the streaming potential. Finally, the electrokinetic energy conversion efficiency is studied. The result shows that both the streaming potential and energy conversion efficiency monotonically increase with the FCL thickness d increasing. However, they present a monotonic decrease trend with the increase of K, which is the ratio of the characteristic scale of the mobile charges to the fixed charge within the FCL. We compare the results in a soft nanotube with those in a rigid one, whose zeta potential is equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanotube. We find that the electric potential in a soft nanotube is higher than that in the corresponding rigid nanotube, which results in a larger streaming potential in the soft nanotue. Moreover, for the parameter ranges considered in this work, our results show that the electrokinetic energy conversion efficiency in a soft nanotube is 1.5-3 times higher than that in a rigid nanotube. These findings are important for investigating the streaming potential and electrokinetic energy conversion efficiency in soft nanotubes. They can be used as a kind of new method to enhance the energy conversion efficiency of the electrokinetic transport in nanotube.
      Corresponding author: Jian Yong-Jun, jianyj@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472140, 11562014), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, China (Grant No. NJYT-13-A02), the Inner Mongolia Grassland Talent, China (Grant No. 12000-12102013), and the Opening Fund of State Key Laboratory of Nonlinear Mechanics, China.
    [1]

    Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [2]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [3]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 61 124702]

    [4]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [5]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 62 144702]

    [6]

    Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 64 174702]

    [7]

    Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251

    [8]

    Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601

    [9]

    Davidson C, Xuan X 2008 J. Power Sources 179 297

    [10]

    van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022

    [11]

    Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003

    [12]

    Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905

    [13]

    Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361

    [14]

    Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122

    [15]

    Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443

    [16]

    Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222

    [17]

    Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558

    [18]

    Chen G, Das S 2015 J. Colloid Interface Sci. 445 357

    [19]

    Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582

    [20]

    Ohshima H 1997 J. Colloid Interface Sci. 185 269

    [21]

    Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638

    [22]

    Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158

    [23]

    Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239

    [24]

    Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222

    [25]

    Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105

    [26]

    Chakraborty S, Das S 2008 Phys. Rev. E 77 037303

    [27]

    Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]

    [28]

    Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001

  • [1]

    Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [2]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [3]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 61 124702]

    [4]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [5]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 62 144702]

    [6]

    Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 64 174702]

    [7]

    Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251

    [8]

    Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601

    [9]

    Davidson C, Xuan X 2008 J. Power Sources 179 297

    [10]

    van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022

    [11]

    Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003

    [12]

    Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905

    [13]

    Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361

    [14]

    Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122

    [15]

    Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443

    [16]

    Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222

    [17]

    Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558

    [18]

    Chen G, Das S 2015 J. Colloid Interface Sci. 445 357

    [19]

    Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582

    [20]

    Ohshima H 1997 J. Colloid Interface Sci. 185 269

    [21]

    Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638

    [22]

    Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158

    [23]

    Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239

    [24]

    Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222

    [25]

    Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105

    [26]

    Chakraborty S, Das S 2008 Phys. Rev. E 77 037303

    [27]

    Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]

    [28]

    Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001

  • [1] Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiang-Qian. Optical enhancement of perovskite solar cells by metallic nano-patterns. Acta Physica Sinica, 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [2] Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme. Acta Physica Sinica, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] Liu Shun-Rui, Nie Zhao-Ting, Zhang Ming-Lei, Wang Li, Leng Yan-Bing, Sun Yan-Jun. Improvement in the efficiency of up-conversion infrared photodetector by nanospheres. Acta Physica Sinica, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [4] Xu Qiang-Qiang, Ji Xu, Li Ming, Liu Jia-Xing, Li Hai-Li. Performances of thermoelectric module under solar Fresnel concentration. Acta Physica Sinica, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [5] Zhang Kong, Bai Jian-Dong, He Jun, Wang Jun-Min. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [6] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [7] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [8] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Wang Xue-Yan. Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites. Acta Physica Sinica, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [9] Xu Jia-Xiong, Yao Ruo-He. Investigation of the photovoltaic performance of n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell. Acta Physica Sinica, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [10] Li Pei-Li, Shi Wei-Hua, Huang De-Xiu, Zhang Xin-Liang. Theoretical investigation of orthogonal dual-pump four-wave mixing in semiconductor optical amplifier. Acta Physica Sinica, 2012, 61(8): 084209. doi: 10.7498/aps.61.084209
    [11] Li Yu-Tong, Liu Feng, Zhang Yi, Lin Xiao-Xuan, Wang Shou-Jun, Wang Zhao-Hua, Li Ying-Jun, Sheng Zheng-Ming, Xu Miao-Hua, Wei Zhi-Yi, Zhang Jie, Zheng Jun, Meng Li-Min. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Physica Sinica, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [12] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [13] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [14] Zhou Cheng, Gao Yan-Xia, Wang Pei-Ji, Zhang Zhong, Li Ping. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [16] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [17] Xu Miao-Hua, Chen Li-Ming, Li Yu-Tong, Yuan Xiao-Hui, Liu Yun-Quan, Kazuhisa Nakajima, Toshi Tajima, Wang Zhao-Hua, Wei Zhi-Yi, Zhao Wei, Zhang Jie. Experimental study on Kα X-ray emission from intense femtosecond laser-solid interactions. Acta Physica Sinica, 2007, 56(1): 353-358. doi: 10.7498/aps.56.353
    [18] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [19] WANG YI-SHAN, CHEN GUO-FU, YU LIAN-JUN, ZHAO SHANG-HONG, ZHAO WEI. GENERATION OF THE HIGH EFFICIENCY HIGH PEAK-POWER FEMTOSECOND BLUE OPTICAL PULSE. Acta Physica Sinica, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
    [20] ZHANG JUN, PEI WEN-BING, SUI CHENG-ZHI, GU PEI-JUN. X-RAY TEMPERATURE AND X-RAY CONVERSION EFFI-CIENCY FOR LASER CYLINDRICAL CAVITY TARGETS. Acta Physica Sinica, 1991, 40(3): 424-432. doi: 10.7498/aps.40.424
Metrics
  • Abstract views:  6112
  • PDF Downloads:  226
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2015
  • Accepted Date:  06 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map