Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information

Liu Ran Wu Ze Li Yu-Chen Chen Yu-Quan Peng Xin-Hua

Citation:

Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information

Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua
PDF
HTML
Get Citation
  • Quantum Fisher information plays a vital role in the field of quantum metrology and quantum information, because it not only quantifies the ultimate precision bound of parameter estimation but also provides criteria for entanglement detection. Nevertheless, experimentally extracting quantum Fisher information is intractable. Quantum state tomography is a typical approach to obtaining the complete information about a quantum system and extract quantum Fisher information. However it becomes infeasible for large-scale quantum systems owing to the exponentially growing complexity. In this paper, we present a general relationship between quantum Fisher information and the overlap of quantum states. Specifically, we show that for pure states, the quantum Fisher information can be exactly extracted from the overlap, whereas for mixed states, only the lower bound can be obtained. We also develop a protocol for measuring the overlap of quantum states, which only requires one additional auxiliary qubit and a single measurement for pure state. Our protocol is more efficient and scalable than previous approaches because it requires less time and fewer measurements. We use this protocol to characterize the multiparticle entanglement in a three-body interaction system undergoing adiabatic quantum phase transition, and experimentally demonstrate its feasibility for the first time in a nuclear magnetic resonance quantum system. We conduct our experiment on a 4-qubit nuclear magnetic resonance quantum simulator, three of which are used to simulate the quantum phase transition in a three-body interaction system, and the remaining one is used as the auxiliary qubit to detect the overlap of the quantum state. We use gradient ascent pulse engineering pulses to implement the process of evolution. By measuring the auxiliary qubit, the experimental results of quantum Fisher information are obtained and match well with the theoretical predictions, thus successfully characterizing the multiparticle entanglement in a practical quantum system. We further confirm our results by performing quantum state tomography on some quantum states in the adiabatic process. The experimentally reconstructed quantum states are close to the corresponding instantaneous ground states.
      Corresponding author: Peng Xin-Hua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2018 YFA0306600), the National Natural Science Foundation of China (Grant Nos. 11927811, 1192780017), the Innovation Program for Quantum Science and Technology (Grant No. 2021 ZD0303205), and the Initiative in Quantum Information Technologies of Anhui Province, China (Grant No. AHY050000)
    [1]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [3]

    任志红, 李岩, 李艳娜, 李卫东 2019 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [4]

    Liu R, Chen Y, Jiang M, Yang X D, Wu Z, Li Y C, Yuan H D, Peng X H, Du J F 2021 Npj Quantum Inf. 7 170Google Scholar

    [5]

    Niu M L, Wang Y M, Li Z J 2022 Acta. Phys. Sin. 71 090601Google Scholar

    [6]

    Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey A M, Ye J, Kaufman A M, Zoller P 2019 Phys. Rev. Lett. 123 260505Google Scholar

    [7]

    Yang X D, Thompson J, Wu Z, Gu M L, Peng X H, Du J F 2020 Npj Quantum Inf. 6 62Google Scholar

    [8]

    Koczor B, Endo S, Jones T, Matsuzaki Y, Benjamin S C 2020 New J. Phys. 22 083038Google Scholar

    [9]

    Kaubruegger R, Vasilyev D V, Schulte M, Hammerer K, Zoller P 2021 Phys. Rev. X. 11 041045

    [10]

    陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫 2021 70 210302Google Scholar

    Chen R Y L, Zhao B C, Song Z X, Zhao X Q, Wang K, Wang X 2021 Acta. Phys. Sin. 70 210302Google Scholar

    [11]

    Marciniak C D, Feldker T, Pogorelov I, Kaubruegger R, Vasilyev D V, van Bijnen R, Schindler P, Zoller P, Blatt R, Monz T 2022 Nature 603 604Google Scholar

    [12]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezze L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [13]

    Tóth G 2012 Phys. Rev. A 85 022322Google Scholar

    [14]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [15]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301Google Scholar

    [16]

    Hong Y, Luo S, Song H 2015 Phys. Rev. A 91 042313Google Scholar

    [17]

    Mirkhalaf S S, Smerzi A 2017 Phys. Rev. A 95 022302Google Scholar

    [18]

    Yu M, Li D X, Wang J C, Chu Y M, Yang P C, Gong M S, Goldman N, Cai J M 2021 Phys. Rev. Research 3 043122Google Scholar

    [19]

    Rath A, Branciard C, Minguzzi A, Vermersch B 2021 Phys. Rev. Lett. 127 260501Google Scholar

    [20]

    Garttner M, Hauke P, Rey A M 2018 Phys. Rev. Lett. 120 040402Google Scholar

    [21]

    Fiderer L J, Fraisse J M E, Braun D 2019 Phys. Rev. Lett. 123 250502Google Scholar

    [22]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [23]

    Yuan H 2016 Phys. Rev. Lett. 117 160801Google Scholar

    [24]

    Macrì T, Smerzi A, Pezzè L 2016 Phys. Rev. A 94 010102Google Scholar

    [25]

    Ekert A K, Alves C M, Oi D K, Horodecki M, Horodecki P, Kwek L C 2002 Phys. Rev. Lett. 88 217901Google Scholar

    [26]

    Quan H T, Song Z, Liu X F, Zanardi P, Sun C P 2006 Phys. Rev. Lett. 96 140604Google Scholar

    [27]

    Zhang J, Peng X, Rajendran N, Suter D 2008 Phys. Rev. Lett. 100 100501Google Scholar

    [28]

    Peng X H, Zhang J F, Du J F, Suter D 2010 Phys. Rev. A 81 042327Google Scholar

    [29]

    Ding Z, Liu R, Radhakrishnan C, Ma W C, Peng X H, Wang Y, Byrnes T, Shi F Z, Du J F 2021 Npj Quantum Inf. 7 145Google Scholar

    [30]

    Peng X H, Zhu X W, Fang X M, Feng M, Gao K L, Yang X D, Liu M L 2001 Chem. Phys. Lett. 340 509Google Scholar

    [31]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [32]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J. Magn. Reson. 172 296Google Scholar

    [33]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2018 64 167601Google Scholar

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2018 Acta. Phys. Sin. 64 167601Google Scholar

    [34]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta. Phys. Sin. 67 220301Google Scholar

    [35]

    Wang T L, Wu L N, Yang W, Jin G R, Lambert N, Nori F 2014 New J. Phys. 16 063039Google Scholar

    [36]

    Yin S Y, Song J, Zhang Y J, Liu S T 2019 Phys. Rev. B 100 184417Google Scholar

  • 图 1  测量量子态重叠的量子线路 (a) 当待测量子系统S是混态时, 系统中需要添加一个辅助量子比特A和额外的待测系统S的复制来测量${\mathscr{D}}$; (b) 当待测量子系统S是纯态时, 系统中仅需要添加一个额外的辅助量子比特A来测量${\mathscr{D}}$

    Figure 1.  Quantum circuit for measuring the overlap ${\mathscr{D}}$ of quanum states: (a) An auxiliary qubit A and an additional copy of the system S are added into the system for measuring ${\mathscr{D}}$ when S is mixed; (b) only an auxiliary qubit A are added into the system for measuring ${\mathscr{D}}$ when S is pure.

    图 2  利用量子Fisher信息实现实验多体纠缠刻画示意图 (a) 基于平均量子Fisher信息的多体纠缠判据; (b) 用于实验模拟耦合了辅助量子比特的三自旋相互作用系统13C-iodotriuroethylene样品分子结构及其他相关参数. 对角部分与非对角部分分别表示化学位移与J耦合大小(单位均为Hz)

    Figure 2.  Schematic diagram of experimentally characterizing the multiparticle entanglement in three-body interaction system with quantum Fisher information: (a) Criteria for multiparticle entanglement based on the average of quantum Fisher information; (b) molecular structure and the relevant parameters of 13C-iodotriuroethylene for simulating the three-body interaction system coupling with an auxiliary qubit. The diagonal and off-diagonal elements represent chemical shifts and J-couplings (all in Hz), respectively.

    图 3  利用量子态重叠提取到的平均量子Fisher信息的实验结果 (a), (b), (c)分别对应哈密顿量$H_{zz}, H_{zzz}, H_{zzz}^\prime$的结果

    Figure 3.  Experimental result of the average of quantum Fisher information extracted from overlap: (a), (b), (c) correspond to the result of Hamiltonian $H_{zz}, H_{zzz}, H_{zzz}^\prime$, respectively.

    图 4  绝热过程制备的基态密度矩阵的实验重构结果 (a), (b), (c)分别对应哈密顿量$H_{zz}, H_{zzz}, H_{zzz}^\prime$

    Figure 4.  Experimentally reconstructed density matrices of ground states prepared by adiabatic process: (a), (b), (c) correspond to the result of Hamiltonian $H_{zz}, H_{zzz}, H_{zzz}^\prime$, respectively.

    Baidu
  • [1]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [3]

    任志红, 李岩, 李艳娜, 李卫东 2019 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [4]

    Liu R, Chen Y, Jiang M, Yang X D, Wu Z, Li Y C, Yuan H D, Peng X H, Du J F 2021 Npj Quantum Inf. 7 170Google Scholar

    [5]

    Niu M L, Wang Y M, Li Z J 2022 Acta. Phys. Sin. 71 090601Google Scholar

    [6]

    Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey A M, Ye J, Kaufman A M, Zoller P 2019 Phys. Rev. Lett. 123 260505Google Scholar

    [7]

    Yang X D, Thompson J, Wu Z, Gu M L, Peng X H, Du J F 2020 Npj Quantum Inf. 6 62Google Scholar

    [8]

    Koczor B, Endo S, Jones T, Matsuzaki Y, Benjamin S C 2020 New J. Phys. 22 083038Google Scholar

    [9]

    Kaubruegger R, Vasilyev D V, Schulte M, Hammerer K, Zoller P 2021 Phys. Rev. X. 11 041045

    [10]

    陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫 2021 70 210302Google Scholar

    Chen R Y L, Zhao B C, Song Z X, Zhao X Q, Wang K, Wang X 2021 Acta. Phys. Sin. 70 210302Google Scholar

    [11]

    Marciniak C D, Feldker T, Pogorelov I, Kaubruegger R, Vasilyev D V, van Bijnen R, Schindler P, Zoller P, Blatt R, Monz T 2022 Nature 603 604Google Scholar

    [12]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezze L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [13]

    Tóth G 2012 Phys. Rev. A 85 022322Google Scholar

    [14]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [15]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301Google Scholar

    [16]

    Hong Y, Luo S, Song H 2015 Phys. Rev. A 91 042313Google Scholar

    [17]

    Mirkhalaf S S, Smerzi A 2017 Phys. Rev. A 95 022302Google Scholar

    [18]

    Yu M, Li D X, Wang J C, Chu Y M, Yang P C, Gong M S, Goldman N, Cai J M 2021 Phys. Rev. Research 3 043122Google Scholar

    [19]

    Rath A, Branciard C, Minguzzi A, Vermersch B 2021 Phys. Rev. Lett. 127 260501Google Scholar

    [20]

    Garttner M, Hauke P, Rey A M 2018 Phys. Rev. Lett. 120 040402Google Scholar

    [21]

    Fiderer L J, Fraisse J M E, Braun D 2019 Phys. Rev. Lett. 123 250502Google Scholar

    [22]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [23]

    Yuan H 2016 Phys. Rev. Lett. 117 160801Google Scholar

    [24]

    Macrì T, Smerzi A, Pezzè L 2016 Phys. Rev. A 94 010102Google Scholar

    [25]

    Ekert A K, Alves C M, Oi D K, Horodecki M, Horodecki P, Kwek L C 2002 Phys. Rev. Lett. 88 217901Google Scholar

    [26]

    Quan H T, Song Z, Liu X F, Zanardi P, Sun C P 2006 Phys. Rev. Lett. 96 140604Google Scholar

    [27]

    Zhang J, Peng X, Rajendran N, Suter D 2008 Phys. Rev. Lett. 100 100501Google Scholar

    [28]

    Peng X H, Zhang J F, Du J F, Suter D 2010 Phys. Rev. A 81 042327Google Scholar

    [29]

    Ding Z, Liu R, Radhakrishnan C, Ma W C, Peng X H, Wang Y, Byrnes T, Shi F Z, Du J F 2021 Npj Quantum Inf. 7 145Google Scholar

    [30]

    Peng X H, Zhu X W, Fang X M, Feng M, Gao K L, Yang X D, Liu M L 2001 Chem. Phys. Lett. 340 509Google Scholar

    [31]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [32]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J. Magn. Reson. 172 296Google Scholar

    [33]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2018 64 167601Google Scholar

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2018 Acta. Phys. Sin. 64 167601Google Scholar

    [34]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta. Phys. Sin. 67 220301Google Scholar

    [35]

    Wang T L, Wu L N, Yang W, Jin G R, Lambert N, Nori F 2014 New J. Phys. 16 063039Google Scholar

    [36]

    Yin S Y, Song J, Zhang Y J, Liu S T 2019 Phys. Rev. B 100 184417Google Scholar

  • [1] Ren Ya-Lei, Zhou Tao. Quantum Fisher information in moving reference frame. Acta Physica Sinica, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] Li Jun-Qing, Huang Li, Cui Shi-Jie, Wang Yin-Zhu. Quantum correlation measure based on min relative entropy for two-partition and k-partition. Acta Physica Sinica, 2023, 72(1): 010302. doi: 10.7498/aps.72.20221293
    [3] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] He Zhi, Jiang Deng-Kui, Li Yan. Non-Markovian measure independent of initial states of open systems. Acta Physica Sinica, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [6] Niu Ming-Li, Wang Yue-Ming, Li Zhi-Jian. Estimation of light-matter coupling constant under dispersive interaction based on quantum Fisher information. Acta Physica Sinica, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [7] Yang Le, Li Kai, Dai Hong-Yi, Zhang Ming. A novel scheme of quantum state tomography based on quantum algorithms. Acta Physica Sinica, 2019, 68(14): 140301. doi: 10.7498/aps.68.20190157
    [8] Tian Cong, Lu Xiang, Zhang Ying-Jie, Xia Yun-Jie. Control of maximum evolution speed of quantum states by two-mode entangled light field. Acta Physica Sinica, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [9] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] Zhao Jun-Long, Zhang Yi-Dan, Yang Ming. Influence of noice on tripartite quantum probe state. Acta Physica Sinica, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [11] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [12] Chen Jun, Yu Ya-Fei, Zhang Zhi-Ming. Optimizing quantum state transfer in multi-excitation spin chains via information flux. Acta Physica Sinica, 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [13] Guo Hong. Effects of initial states on the quantum correlation in Bose-Hubbard model. Acta Physica Sinica, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [14] Liu Yu-Zhu, Gerber Thomas, Knopp Gregor. Optical control of the vibrational excitation of the polyatomic ions via strong field multi-photon ionization. Acta Physica Sinica, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [15] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [16] Sun Xin-Mei, Zha Xin-Wei, Qi Jian-Xia, Lan Qian. High-efficient quantum state sharing via non-maximally five-qubit cluster state. Acta Physica Sinica, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [17] Liu Xiao-Juan, Zhou Bing-Ju, Liu Yi-Man, Jiang Chun-Lei. Manipulation of entanglement and preparation of quantum states for moving two-atom and the light field via intensity-dependent coupling. Acta Physica Sinica, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [18] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [19] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [20] Liu Tang-Kun, Wang Ji-Suo, Liu Xiao-Jun, Zhan Ming-Sheng. . Acta Physica Sinica, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
Metrics
  • Abstract views:  4334
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2023
  • Accepted Date:  25 April 2023
  • Available Online:  26 April 2023
  • Published Online:  05 June 2023

/

返回文章
返回
Baidu
map