Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the methods of calibrating spectral line position of interference imaging spectrometer

Wei Yu-Tong Liu Shang-Kuo Yan Ting-Yu Li Qi-Wei

Citation:

Study on the methods of calibrating spectral line position of interference imaging spectrometer

Wei Yu-Tong, Liu Shang-Kuo, Yan Ting-Yu, Li Qi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The principle of interference imaging spectrometer is presented. According to the drift of recovery spectral line position, two representative methods of calibrating the laboratory spectral line position are proposed, and the calibration results and their comparative analyses are given. One method of calibration is to correct the principle, which embarks from parameter selection of interference imaging spectrometer and the analysis of the reason why the spectral line position is drifted. Aiming at the problem that the position of spectral line changes with row, the correction scheme is given to improve the accuracy of spectral line position. For four given laser wavelengths, which are 543.5 nm, 594.1 nm, 612 nm, and 632.8 nm, the root-mean-square (RMS) error of spectral line position is reduced from 28.3914 to 5.5371 after calibration. For the interferometer system which has no dispersion, the accuracy of calibration is better than the dispersion system, and can be the same at all detected wavelengths. In this article, the calibration accuracy of long wave is better than that of short wave, which is dependent on the selection of the initial correction wavelength. This method achieves a kind of universality for interference imaging spectrometer and its calibration parameters provide a convenient way to analyze the instrument indexes. Another calibration method is data processing. It makes up the deficiencies of the method mentioned above: a large number of data are needed and the effect of calibration at short wave is not good enough. The RMS error of spectral line position is reduced to 0.9178, which proves that the calibration has a really high precision. This method is simple and can correct all the detected wavelengths and spectral lines by using two united formula. Though this method is not applicable for all the interference imaging spectrometers, the idea that makes hard things simple is deserving of our attention. We can use it in many other fields. The essence of the method is to change a variable quantity into a slowly varying quantity by algorithms, and then establish the relationship between the slowly varying quantity and the standard value. This idea can always make a substantial increase in efficiency of calibration and has a satisfied accuracy. Each of the two methods has advantages and disadvantages: which method we choose to use is dependent on the effect we want to achieve, and it is better to make their combination. This study provides a theoretical and practical guidance for study, design, modulation, experiment and engineering of interference imaging spectrometers.
      Corresponding author: Wei Yu-Tong, helln7@sina.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41530422), the National Natural Science Foundation of China (Grant Nos. 61540018, 61275184, 61405153), the National Major Project (Grant No. 32-Y30B08-9001-13/15), the National High Technology Research and Development Program of China (Grant No. 2012AA121101), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130201120047).
    [1]

    Zhang C M, Huang W J, Zhao B C 2010 Acta Phys. Sin. 59 5479 (in Chinese) [张淳民, 黄伟健, 赵葆常 2010 59 5479]

    [2]

    Justice C O, Vermote E, Townshenel J R G, Defries R, Roy D P, Hall D K 1998 Geosci. Remote Sens. 36 1228

    [3]

    Rast M, Bezy J L 1999 Inter. J. Remote Sens. 20 1681

    [4]

    Cutter, Mike A, Johns, Lisa S, Lobb, Dan R, Williams T L, Settle J J 2004 Imaging Spec. IX. Proc. SPIE 5159 392

    [5]

    Zhao B C, Yang J F, Chang L Y, Chen L W, He Y H, Xue B 2009 Acta Photon. Sin. 38 479 (in Chinese) [赵葆常, 杨建峰, 常凌颖, 陈立武, 贺应红, 薛彬 2009 光子学报 38 479]

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Tang Y H, Qin L, Gao H Y, Zhu C, Wang D Y 2011 Opt. Commun. 284 2672

    [8]

    Ai J J, Zhang C M, Gao P, Jia C L 2013 Opt. Commun. 298 46

    [9]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [10]

    Zhang C M, Zhao B C, Xiang L B 2001 Acta Opt. Sin. 21 192 (in Chinese) [张淳民, 赵葆常, 相里斌 2001 光学学报 21 192]

    [11]

    Li Z W, Xiong W, Shi H L, Wang X H, Ye H H, Wei Q Y, Qiao Y L 2014 Acta Opt. Sin. 34 0430002-1 (in Chinese) [李志伟, 熊伟, 施海亮, 王先华, 叶函函, 韦秋叶, 乔延利 2014 光学学报 34 0430002-1]

    [12]

    Wang M Z, Yan L, Yang B, Gou Z Y 2013 Spectrosc. Spect. Anal. 33 2280 (in Chinese) [王明志, 晏磊, 杨彬, 勾志阳 2013 光谱学与光谱分析 33 2280]

    [13]

    Zhao B C, Yang J F, Xue B, Qiao W D, Qiu Y H 2010 Acta Photon. Sin. 39 769 (in Chinese) [赵葆常, 杨建峰, 薛彬, 乔卫东, 邱跃洪 2010 光子学报 39 769]

    [14]

    Gao J, Ji Z Y, Cui Y, Shi D L, Zhou J S, Xiang L B, Wang Z H 2009 Acta Photon. Sin. 38 2853 (in Chinese) [高静, 计忠瑛, 崔燕, 石大莲, 周锦松, 相里斌, 王忠厚 2009 光子学报 38 2853]

    [15]

    Liu Q Q, Zheng Y Q 2012 Chin. Opt. 5 566 (in Chinese) [刘倩倩, 郑玉权 2012 中国光学 5 566]

    [16]

    Anderson J M 1999 Int. J. Remote Sens. 20 535

    [17]

    Julia C J, Micheal W K, Maryn G S, Eustace L D 2011 Appl. Opt. 50 1170

    [18]

    Micheal W K, Eustace L D 2012 Opt. Express 20 17973

    [19]

    Kim J H, Jae H H, Jichai J 2015 J. Lightwave Technol. 33 3413

    [20]

    Mu T K, Zhang C M, Jia C L, Ren W Y 2012 Opt. Express 20 18194

    [21]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese) [袁志林, 张淳民, 赵葆常 2007 56 6413]

    [22]

    Zhang C M, Xiang L B, Zhao B C, Zha X W 2003 Opt. Commun. 227 221

    [23]

    Ai J J, Zhang C M, Jia C L, Gao P 2013 Optik 124 5751

    [24]

    Zhang C M, Xiang L B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 6 815

    [25]

    Zhang C M 2010 Study on Interference Imaging Spectroscopy (Beijing: Science Press) p51 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社) 第51页]

    [26]

    He J, Zhang C M 2005 J. Opt. A: Pure Appl. Opt. 7 613

    [27]

    Jian X H, Zhang C M, Zhang L, Zhao B C 2010 Opt. Express 18 5674

    [28]

    Jian X H, Zhang C M, Zhu B H, Ren W Y 2010 Acta Phys. Sin. 59 6131 (in Chinese) [简小华, 张淳民, 祝宝辉, 任文艺 2010 59 6131]

    [29]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [30]

    Ren W Y, Zhang C M, Jia C L, Mu T K, Li Q W, Zhang L 2013 Opt. Lett. 38 1295

    [31]

    Mu T K, Zhang C M, Zhao B C 2009 Opt. Commun. 282 1699

  • [1]

    Zhang C M, Huang W J, Zhao B C 2010 Acta Phys. Sin. 59 5479 (in Chinese) [张淳民, 黄伟健, 赵葆常 2010 59 5479]

    [2]

    Justice C O, Vermote E, Townshenel J R G, Defries R, Roy D P, Hall D K 1998 Geosci. Remote Sens. 36 1228

    [3]

    Rast M, Bezy J L 1999 Inter. J. Remote Sens. 20 1681

    [4]

    Cutter, Mike A, Johns, Lisa S, Lobb, Dan R, Williams T L, Settle J J 2004 Imaging Spec. IX. Proc. SPIE 5159 392

    [5]

    Zhao B C, Yang J F, Chang L Y, Chen L W, He Y H, Xue B 2009 Acta Photon. Sin. 38 479 (in Chinese) [赵葆常, 杨建峰, 常凌颖, 陈立武, 贺应红, 薛彬 2009 光子学报 38 479]

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Tang Y H, Qin L, Gao H Y, Zhu C, Wang D Y 2011 Opt. Commun. 284 2672

    [8]

    Ai J J, Zhang C M, Gao P, Jia C L 2013 Opt. Commun. 298 46

    [9]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [10]

    Zhang C M, Zhao B C, Xiang L B 2001 Acta Opt. Sin. 21 192 (in Chinese) [张淳民, 赵葆常, 相里斌 2001 光学学报 21 192]

    [11]

    Li Z W, Xiong W, Shi H L, Wang X H, Ye H H, Wei Q Y, Qiao Y L 2014 Acta Opt. Sin. 34 0430002-1 (in Chinese) [李志伟, 熊伟, 施海亮, 王先华, 叶函函, 韦秋叶, 乔延利 2014 光学学报 34 0430002-1]

    [12]

    Wang M Z, Yan L, Yang B, Gou Z Y 2013 Spectrosc. Spect. Anal. 33 2280 (in Chinese) [王明志, 晏磊, 杨彬, 勾志阳 2013 光谱学与光谱分析 33 2280]

    [13]

    Zhao B C, Yang J F, Xue B, Qiao W D, Qiu Y H 2010 Acta Photon. Sin. 39 769 (in Chinese) [赵葆常, 杨建峰, 薛彬, 乔卫东, 邱跃洪 2010 光子学报 39 769]

    [14]

    Gao J, Ji Z Y, Cui Y, Shi D L, Zhou J S, Xiang L B, Wang Z H 2009 Acta Photon. Sin. 38 2853 (in Chinese) [高静, 计忠瑛, 崔燕, 石大莲, 周锦松, 相里斌, 王忠厚 2009 光子学报 38 2853]

    [15]

    Liu Q Q, Zheng Y Q 2012 Chin. Opt. 5 566 (in Chinese) [刘倩倩, 郑玉权 2012 中国光学 5 566]

    [16]

    Anderson J M 1999 Int. J. Remote Sens. 20 535

    [17]

    Julia C J, Micheal W K, Maryn G S, Eustace L D 2011 Appl. Opt. 50 1170

    [18]

    Micheal W K, Eustace L D 2012 Opt. Express 20 17973

    [19]

    Kim J H, Jae H H, Jichai J 2015 J. Lightwave Technol. 33 3413

    [20]

    Mu T K, Zhang C M, Jia C L, Ren W Y 2012 Opt. Express 20 18194

    [21]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese) [袁志林, 张淳民, 赵葆常 2007 56 6413]

    [22]

    Zhang C M, Xiang L B, Zhao B C, Zha X W 2003 Opt. Commun. 227 221

    [23]

    Ai J J, Zhang C M, Jia C L, Gao P 2013 Optik 124 5751

    [24]

    Zhang C M, Xiang L B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 6 815

    [25]

    Zhang C M 2010 Study on Interference Imaging Spectroscopy (Beijing: Science Press) p51 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社) 第51页]

    [26]

    He J, Zhang C M 2005 J. Opt. A: Pure Appl. Opt. 7 613

    [27]

    Jian X H, Zhang C M, Zhang L, Zhao B C 2010 Opt. Express 18 5674

    [28]

    Jian X H, Zhang C M, Zhu B H, Ren W Y 2010 Acta Phys. Sin. 59 6131 (in Chinese) [简小华, 张淳民, 祝宝辉, 任文艺 2010 59 6131]

    [29]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [30]

    Ren W Y, Zhang C M, Jia C L, Mu T K, Li Q W, Zhang L 2013 Opt. Lett. 38 1295

    [31]

    Mu T K, Zhang C M, Zhao B C 2009 Opt. Commun. 282 1699

  • [1] Lin Shu, Tian Jia-Yuan. Medium correction to gravitational form factors. Acta Physica Sinica, 2023, 72(7): 071201. doi: 10.7498/aps.72.20222473
    [2] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [3] Lin Ting-Ting, Li Yue, Gao Xing, Wan Ling. Random noise suppression of magnetic resonance sounding signal based on modified short-time Fourier transform. Acta Physica Sinica, 2021, 70(16): 163303. doi: 10.7498/aps.70.20202044
    [4] Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method. Acta Physica Sinica, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [5] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [6] Lü Xi-Ming, Li Hui, You Jing, Li Wei, Wang Peng-Ye, Li Ming, Xi Xu-Guang, Dou Shuo-Xing. An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing. Acta Physica Sinica, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [7] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [8] Jiao Yang, Xu Liang, Gao Min-Guang, Jin Ling, Tong Jing-Jing, Li Sheng, Wei Xiu-Li. Real-time data processing of remote measurement of air pollution by infrared passive scanning imaging system. Acta Physica Sinica, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [9] Liu Yang-Yang, Lü Qun-Bo, Zeng Xiao-Ru, Huang Min, Xiang Li-Bin. Critical data processing technology for spectral image inversion in a static computational spectral imager. Acta Physica Sinica, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [10] Zeng Xiao-Xiong. Entropy correction to Kerr-Newman black hole. Acta Physica Sinica, 2010, 59(1): 92-96. doi: 10.7498/aps.59.92
    [11] Zhang Li-Chun, Zhao Ren. Radiation spectrum of Kerr-Newman-de Sitter black hole and correction to its entropy. Acta Physica Sinica, 2010, 59(4): 2217-2222. doi: 10.7498/aps.59.2217
    [12] Zhang Zhe, Obergfell Kyle, Xianming L. Han, Chen Xiang-Jun. Monte-Carlo fitting and its application in electron momentum spectroscopy data processing. Acta Physica Sinica, 2010, 59(3): 1695-1701. doi: 10.7498/aps.59.1695
    [13] Jian Xiao-Hua, Zhang Chun-Min, Zhu Bao-Hui, Ren Wen-Yi. The data processing method of the temporarily and spatially mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [14] Yu Yuan-Qin, Lin Ke, Yu Feng, Zhou Xiao-Guo, Liu Shi-Lin, Ma Xing-Xiao. New treatment of CARS spectrum to determine the Raman depolarization ratio. Acta Physica Sinica, 2007, 56(5): 2699-2703. doi: 10.7498/aps.56.2699
    [15] Sun Ke-Xu, Jiang Shao-En, Yi Rong-Qing, Cui Yan-Li, Ding Yong-Kun, Liu Shen-Ye. Research on time characteristics of soft X-ray diode. Acta Physica Sinica, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [16] CHI LING-FEI, LIN KUI-XUN, YAO RUO-HE, LIN XUAN-YING, YU CHU-YING, YU YUN-PENG. DIAGNOSTIC OF RF PLASMA BY USING LANGMUIR PROBE AND ITS NUMERICAL PROCESSING. Acta Physica Sinica, 2001, 50(7): 1313-1317. doi: 10.7498/aps.50.1313
    [17] YAO RUO-HE, CHI LING-FEI, LIN XUAN-YING, SHI WANG-ZHOU, LIN KUI-XUN. THE DIAGNOSTICS OF RF GLOW DISCHARGE PLASMA BY A PROBE AND ITS DATA PROCESS. Acta Physica Sinica, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [18] LI HONG-CHENG, WANG RUI-LAN, WANG PING-SHU, GUAN WEI-YAN. A METHOD OF TEMPERATURE CORRECTION FOR ELECTRON TUNNELING SPECTRUM. Acta Physica Sinica, 1986, 35(3): 393-396. doi: 10.7498/aps.35.393
    [19] WU ZI-QIN, DUAN JIAN-ZHONG. THE CALCULATION OF BACKSCATTERING FACTORS IN AUGER ELECTRON SPECTROSCOPY. Acta Physica Sinica, 1984, 33(3): 419-424. doi: 10.7498/aps.33.419
    [20] QING CHENG-RUI, HE ZUO-XIU. A DISCUSSION OF THE ATOMIC EFFECT IN THE β-DECAY OF 3H AND THE NEUTRINO MASS. Acta Physica Sinica, 1982, 31(5): 654-659. doi: 10.7498/aps.31.654
Metrics
  • Abstract views:  6273
  • PDF Downloads:  240
  • Cited By: 0
Publishing process
  • Received Date:  10 November 2015
  • Accepted Date:  12 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map