Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum steering based weak entanglement detection

QIU Shangfeng XU Qiao ZHOU Xiaoqi

Citation:

Quantum steering based weak entanglement detection

QIU Shangfeng, XU Qiao, ZHOU Xiaoqi
cstr: 32037.14.aps.74.20241539
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Quantum entanglement is a unique phenomenon of quantum mechanics and the core of many quantum technologies. Although entanglement is often observed in small-scale systems, detecting weak entanglement in large or noisy systems remains a major challenge, as experimental flaws can easily destroy fragile quantum correlations. A new weak entanglement detection criterion based on quantum steering has recently been proposed as a potential alternative to traditional entanglement witnesses. In this work, we provide a theoretical analysis by comparing the detection capabilities of the steering-based criterion with those of traditional entanglement witnesses under realistic measurement errors. The results show that the steering-based approach offers improved sensitivity for detecting weak entanglement. We further experimentally verify the feasibility of this steering-based criterion by using a linear optical setup. The experimental results align well with theoretical predictions, confirming the practicality and reliability of the method. These findings provide the steering-based criterion as a promising and accessible tool for detecting weak entanglement, and are expected to have potential applications in quantum communication, quantum computing, and other areas of quantum information science.
      Corresponding author: ZHOU Xiaoqi, zhouxq8@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974168).
    [1]

    Bell J S 1964 Physics Physique Fizika 1 195Google Scholar

    [2]

    Aspect A, Dalibard J, Roger G 1982 Phys. Rev. Lett. 49 1804Google Scholar

    [3]

    Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 81 5039Google Scholar

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [5]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639Google Scholar

    [6]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [7]

    Rijavec S, Carlesso M, Bassi A, Vedral V, Marletto C 2021 New J. Phys. 23 043040Google Scholar

    [8]

    Tilly J, Marshman R J, Mazumdar A, Bose S 2021 Phys. Rev. A 104 052416Google Scholar

    [9]

    Marshman R J, Mazumdar A, Bose S 2020 Phys. Rev. A 101 052110Google Scholar

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124 221102Google Scholar

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101Google Scholar

    [12]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [13]

    Cao J, Cogdell R J, Coker D F, Duan H G, Hauer J, Kleinekathöfer U, Jansen T L C, Mančal T, Miller R J D, Ogilvie J P, Prokhorenko V I, Renger T, Tan H S, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D 2020 Sci. Adv. 6 eaaz4888Google Scholar

    [14]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [15]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401Google Scholar

    [16]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402Google Scholar

    [17]

    Nguyen H C, Bernards F 2020 Eur. Phys. J. D 74 69Google Scholar

    [18]

    Chevalier H, Paige A J, Kim M S 2020 Phys. Rev. A 102 022428Google Scholar

    [19]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017Google Scholar

    [20]

    Feng T, Vedral V 2022 Phys. Rev. D 106 066013Google Scholar

    [21]

    Chen J L, Su H Y, Xu Z P, Pati A K 2016 Sci. Rep. 6 32075Google Scholar

    [22]

    Feng T, Ren C, Feng Q, Luo M, Qiang X, Chen J, Zhou X 2021 Photonics Res. 9 992Google Scholar

    [23]

    Cao H, Morelli S, Rozema L A, Zhang, C, Tavakoli A, Walther P 2024 Phys. Rev. Lett. 133 150201Google Scholar

    [24]

    Morelli S, Yamasaki H, Huber M, Tavakoli A 2022 Phys. Rev. Lett. 128 250501Google Scholar

    [25]

    Shih Y H, Sergienko A V 1994 Phys. Rev. A 50 2564Google Scholar

    [26]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773Google Scholar

  • 图 1  基于量子导引与基于纠缠目击者的量子纠缠判据比较. (I)为基于量子导引和基于纠缠目击者两种判据都可以检测到量子纠缠的区域; (II)为基于量子导引判据可以检测到量子纠缠的区域, 此区域基于纠缠目击者判据无法检测出量子纠缠; (III)为两种判据都无法检测出量子纠缠的区域. $ \gamma $为纠缠程度参数, $ \delta $为测量精度参数

    Figure 1.  Comparison of quantum entanglement criteria based on quantum steering and entanglement witnesses. (I) Represents the region where both quantum steering-based and entanglement witness-based criteria can detect quantum entanglement; (II) denotes the region where entanglement can be detected by the quantum steering-based criterion but not by the entanglement witness-based criterion; (III) indicates the region where neither criterion can detect quantum entanglement. $ \gamma $ is the entanglement strength parameter, and $ \delta $ is the measurement precision parameter.

    图 2  两光子非对称纠缠态制备与测量装置示意图

    Figure 2.  Schematic diagram of the experimental setup for preparing and measuring asymmetric entangled two-photon states

    图 3  $ \varepsilon $设定为$ {9\pi}/{20} $时的实验结果 (a)在基矢$ {|+\rangle, |-\rangle} $和$ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $下, 对光子A进行测量, 得到4个条件概率$ p_+, $$ \; p_-,\; p_{\varepsilon},\; p_{\varepsilon^{\perp}} $. 浅蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的条件概率, 橙色柱对应可分态$ |\psi\rangle_{\mathrm{s}} $的条件概率; (b)在测量光子A后, 光子B投影到指定量子态下的投影概率为$ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. 深蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的投影概率, 粉色柱对应$ |\psi\rangle_{\mathrm{s }}$的投影概率

    Figure 3.  The experimental results when $\varepsilon $ is set to $ {9\pi}/{20} $. (a) Photon A was measured in the bases $ {|+\rangle, |-\rangle} $ and $ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $, producing four conditional probabilities: $ p_+,\; p_-,\; p_{\varepsilon}, \;p_{\varepsilon^{\perp}} $. Light blue bars correspond to the conditional probabilities of the entangled state $ |\psi\rangle_{\mathrm{e}} $, while orange bars represent those of the separable state $ |\psi\rangle_{\mathrm{s}} $. (b) After the measurement of photon A, photon B was projected onto specific quantum states, resulting in projection probabilities $ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. Dark blue bars illustrate the projection probabilities for the entangled state $ |\psi\rangle_{\mathrm{e}} $, while pink bars denote those for the separable state $ |\psi\rangle_{\mathrm{s}} $.

    图 4  $ \varepsilon $设定为$ {17\pi}/{36} $时的实验结果 (a)在基矢$ {|+\rangle, |-\rangle} $和$ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $下, 对光子A进行测量, 得到4个条件概率$ p_+, $$ p_-,\; p_{\varepsilon},\; p_{\varepsilon^{\perp}} $. 浅蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的条件概率, 橙色柱对应可分态$ |\psi\rangle_{\mathrm{s}} $的条件概率; (b)在测量光子A后, 对光子B投影到指定量子态下的投影概率为$ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. 深蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的投影概率, 粉色柱对应$ |\psi\rangle_{\mathrm{s}} $的投影概率

    Figure 4.  The experimental results when $\varepsilon $ is set to $ {17\pi}/{36} $: (a) Photon A was measured in the bases $ {|+\rangle, |-\rangle} $ and $ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $, producing four conditional probabilities: $ p_+,\; p_-,\; p_{\varepsilon},\; p_{\varepsilon^{\perp}} $. Light blue bars correspond to the conditional probabilities of the entangled state $ |\psi\rangle_e $, while orange bars represent those of the separable state $ |\psi\rangle_{\mathrm{s}} $. (b) After the measurement of photon A, photon B is projected onto specific quantum states, resulting in projection probabilities $ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. Dark blue bars illustrate the projection probabilities for the entangled state $ |\psi\rangle_{\mathrm{e }}$, while pink bars denote those for the separable state $ |\psi\rangle_{\mathrm{s}} $.

    Baidu
  • [1]

    Bell J S 1964 Physics Physique Fizika 1 195Google Scholar

    [2]

    Aspect A, Dalibard J, Roger G 1982 Phys. Rev. Lett. 49 1804Google Scholar

    [3]

    Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 81 5039Google Scholar

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [5]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639Google Scholar

    [6]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [7]

    Rijavec S, Carlesso M, Bassi A, Vedral V, Marletto C 2021 New J. Phys. 23 043040Google Scholar

    [8]

    Tilly J, Marshman R J, Mazumdar A, Bose S 2021 Phys. Rev. A 104 052416Google Scholar

    [9]

    Marshman R J, Mazumdar A, Bose S 2020 Phys. Rev. A 101 052110Google Scholar

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124 221102Google Scholar

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101Google Scholar

    [12]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [13]

    Cao J, Cogdell R J, Coker D F, Duan H G, Hauer J, Kleinekathöfer U, Jansen T L C, Mančal T, Miller R J D, Ogilvie J P, Prokhorenko V I, Renger T, Tan H S, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D 2020 Sci. Adv. 6 eaaz4888Google Scholar

    [14]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [15]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401Google Scholar

    [16]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402Google Scholar

    [17]

    Nguyen H C, Bernards F 2020 Eur. Phys. J. D 74 69Google Scholar

    [18]

    Chevalier H, Paige A J, Kim M S 2020 Phys. Rev. A 102 022428Google Scholar

    [19]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017Google Scholar

    [20]

    Feng T, Vedral V 2022 Phys. Rev. D 106 066013Google Scholar

    [21]

    Chen J L, Su H Y, Xu Z P, Pati A K 2016 Sci. Rep. 6 32075Google Scholar

    [22]

    Feng T, Ren C, Feng Q, Luo M, Qiang X, Chen J, Zhou X 2021 Photonics Res. 9 992Google Scholar

    [23]

    Cao H, Morelli S, Rozema L A, Zhang, C, Tavakoli A, Walther P 2024 Phys. Rev. Lett. 133 150201Google Scholar

    [24]

    Morelli S, Yamasaki H, Huber M, Tavakoli A 2022 Phys. Rev. Lett. 128 250501Google Scholar

    [25]

    Shih Y H, Sergienko A V 1994 Phys. Rev. A 50 2564Google Scholar

    [26]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773Google Scholar

  • [1] LI Xiaoling, ZHAI Shuqin, LIU Kui. Tripartite all-optical quantum steering swapping based on four-wave mixing process. Acta Physica Sinica, 2025, 74(9): 090301. doi: 10.7498/aps.74.20250083
    [2] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [3] Tan Wei-Han, Zhao Chao-Ying, Guo Qi-Zhi. Entanglement criterion of N qubit system. Acta Physica Sinica, 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [4] Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz. Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement. Acta Physica Sinica, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [5] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [7] Zhang Yue, Hou Fei-Yan, Liu Tao, Zhang Xiao-Fei, Zhang Shou-Gang, Dong Rui-Fang. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide. Acta Physica Sinica, 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [8] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [9] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] Wang Mei-Jiao, Xia Yun-Jie. Protecting quantum entanglement at finite temperature by the weak measurements. Acta Physica Sinica, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [12] Li Sheng-Hao, Wu Xiao-Bing, Huang Chong-Fu, Wang Hong-Lei. Optimization of the projected entangled pair state algorithm for quantum systems. Acta Physica Sinica, 2014, 63(14): 140501. doi: 10.7498/aps.63.140501
    [13] Lu Dao-Ming. Entanglement properties in the system of atoms interacting with three coupled cavities which are in weak coherent states. Acta Physica Sinica, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [14] Yang Xiao-Kuo, Cai Li, Zhao Xiao-Hui, Feng Chao-Wen. Function projective synchronization of quntum cellular neural network and Lorenz hyperchaotic system with uncertain parameters. Acta Physica Sinica, 2010, 59(6): 3740-3746. doi: 10.7498/aps.59.3740
    [15] Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [16] Xu Shi-Min, Li Hong-Qi, Wang Ji-Suo, Xu Xing-Lei. Two-mode integral form projection operator and its application in quantum optics. Acta Physica Sinica, 2009, 58(4): 2174-2178. doi: 10.7498/aps.58.2174
    [17] Li Ti-Jun. Integration over entangled state projective operators. Acta Physica Sinica, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [18] Yuan Du-Qi. The criterion of instability for a weakly interacting Fermi gas. Acta Physica Sinica, 2006, 55(8): 3912-3915. doi: 10.7498/aps.55.3912
    [19] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] Zhu Jian-Yang. . Acta Physica Sinica, 1995, 44(9): 1489-1497. doi: 10.7498/aps.44.1489
Metrics
  • Abstract views:  367
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2024
  • Accepted Date:  20 March 2025
  • Available Online:  08 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map