搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子导引的弱纠缠检测

丘尚锋 徐桥 周晓祺

引用本文:
Citation:

基于量子导引的弱纠缠检测

丘尚锋, 徐桥, 周晓祺

Quantum steering based weak entanglement detection

QIU Shangfeng, XU Qiao, ZHOU Xiaoqi
cstr: 32037.14.aps.74.20241539
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 纠缠是量子理论中一种独特的现象, 揭示了经典物理与量子物理之间的根本差异. 虽然在微观尺度上已经观察到许多纠缠现象, 但当涉及大尺度系统的相互作用时, 纠缠往往非常微弱, 此时实验设备的误差可能掩盖微弱信号, 导致纠缠难以测得. 为了提升对微弱纠缠信号的检测灵敏度, 最近提出了一种基于量子导引的弱纠缠判据, 可以有效地检测微弱的纠缠态. 本文在理论上证明了该判据相比于传统纠缠目击者判据在弱纠缠检测能力方面具有明显优势. 此外, 通过光学实验验证了这一判据的可行性, 实验结果为其有效性提供了关键支持, 并展示了该判据在弱纠缠态检测中的创新性和可靠性. 该判据作为一种有效的弱纠缠检测手段, 有望在量子通信、量子计算等量子技术领域中得到广泛应用.
    Quantum entanglement is a unique phenomenon of quantum mechanics and the core of many quantum technologies. Although entanglement is often observed in small-scale systems, detecting weak entanglement in large or noisy systems remains a major challenge, as experimental flaws can easily destroy fragile quantum correlations. A new weak entanglement detection criterion based on quantum steering has recently been proposed as a potential alternative to traditional entanglement witnesses. In this work, we provide a theoretical analysis by comparing the detection capabilities of the steering-based criterion with those of traditional entanglement witnesses under realistic measurement errors. The results show that the steering-based approach offers improved sensitivity for detecting weak entanglement. We further experimentally verify the feasibility of this steering-based criterion by using a linear optical setup. The experimental results align well with theoretical predictions, confirming the practicality and reliability of the method. These findings provide the steering-based criterion as a promising and accessible tool for detecting weak entanglement, and are expected to have potential applications in quantum communication, quantum computing, and other areas of quantum information science.
      通信作者: 周晓祺, zhouxq8@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974168)资助的课题.
      Corresponding author: ZHOU Xiaoqi, zhouxq8@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974168).
    [1]

    Bell J S 1964 Physics Physique Fizika 1 195Google Scholar

    [2]

    Aspect A, Dalibard J, Roger G 1982 Phys. Rev. Lett. 49 1804Google Scholar

    [3]

    Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 81 5039Google Scholar

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [5]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639Google Scholar

    [6]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [7]

    Rijavec S, Carlesso M, Bassi A, Vedral V, Marletto C 2021 New J. Phys. 23 043040Google Scholar

    [8]

    Tilly J, Marshman R J, Mazumdar A, Bose S 2021 Phys. Rev. A 104 052416Google Scholar

    [9]

    Marshman R J, Mazumdar A, Bose S 2020 Phys. Rev. A 101 052110Google Scholar

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124 221102Google Scholar

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101Google Scholar

    [12]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [13]

    Cao J, Cogdell R J, Coker D F, Duan H G, Hauer J, Kleinekathöfer U, Jansen T L C, Mančal T, Miller R J D, Ogilvie J P, Prokhorenko V I, Renger T, Tan H S, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D 2020 Sci. Adv. 6 eaaz4888Google Scholar

    [14]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [15]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401Google Scholar

    [16]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402Google Scholar

    [17]

    Nguyen H C, Bernards F 2020 Eur. Phys. J. D 74 69Google Scholar

    [18]

    Chevalier H, Paige A J, Kim M S 2020 Phys. Rev. A 102 022428Google Scholar

    [19]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017Google Scholar

    [20]

    Feng T, Vedral V 2022 Phys. Rev. D 106 066013Google Scholar

    [21]

    Chen J L, Su H Y, Xu Z P, Pati A K 2016 Sci. Rep. 6 32075Google Scholar

    [22]

    Feng T, Ren C, Feng Q, Luo M, Qiang X, Chen J, Zhou X 2021 Photonics Res. 9 992Google Scholar

    [23]

    Cao H, Morelli S, Rozema L A, Zhang, C, Tavakoli A, Walther P 2024 Phys. Rev. Lett. 133 150201Google Scholar

    [24]

    Morelli S, Yamasaki H, Huber M, Tavakoli A 2022 Phys. Rev. Lett. 128 250501Google Scholar

    [25]

    Shih Y H, Sergienko A V 1994 Phys. Rev. A 50 2564Google Scholar

    [26]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773Google Scholar

  • 图 1  基于量子导引与基于纠缠目击者的量子纠缠判据比较. (I)为基于量子导引和基于纠缠目击者两种判据都可以检测到量子纠缠的区域; (II)为基于量子导引判据可以检测到量子纠缠的区域, 此区域基于纠缠目击者判据无法检测出量子纠缠; (III)为两种判据都无法检测出量子纠缠的区域. $ \gamma $为纠缠程度参数, $ \delta $为测量精度参数

    Fig. 1.  Comparison of quantum entanglement criteria based on quantum steering and entanglement witnesses. (I) Represents the region where both quantum steering-based and entanglement witness-based criteria can detect quantum entanglement; (II) denotes the region where entanglement can be detected by the quantum steering-based criterion but not by the entanglement witness-based criterion; (III) indicates the region where neither criterion can detect quantum entanglement. $ \gamma $ is the entanglement strength parameter, and $ \delta $ is the measurement precision parameter.

    图 2  两光子非对称纠缠态制备与测量装置示意图

    Fig. 2.  Schematic diagram of the experimental setup for preparing and measuring asymmetric entangled two-photon states

    图 3  $ \varepsilon $设定为$ {9\pi}/{20} $时的实验结果 (a)在基矢$ {|+\rangle, |-\rangle} $和$ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $下, 对光子A进行测量, 得到4个条件概率$ p_+, $$ \; p_-,\; p_{\varepsilon},\; p_{\varepsilon^{\perp}} $. 浅蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的条件概率, 橙色柱对应可分态$ |\psi\rangle_{\mathrm{s}} $的条件概率; (b)在测量光子A后, 光子B投影到指定量子态下的投影概率为$ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. 深蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的投影概率, 粉色柱对应$ |\psi\rangle_{\mathrm{s }}$的投影概率

    Fig. 3.  The experimental results when $\varepsilon $ is set to $ {9\pi}/{20} $. (a) Photon A was measured in the bases $ {|+\rangle, |-\rangle} $ and $ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $, producing four conditional probabilities: $ p_+,\; p_-,\; p_{\varepsilon}, \;p_{\varepsilon^{\perp}} $. Light blue bars correspond to the conditional probabilities of the entangled state $ |\psi\rangle_{\mathrm{e}} $, while orange bars represent those of the separable state $ |\psi\rangle_{\mathrm{s}} $. (b) After the measurement of photon A, photon B was projected onto specific quantum states, resulting in projection probabilities $ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. Dark blue bars illustrate the projection probabilities for the entangled state $ |\psi\rangle_{\mathrm{e}} $, while pink bars denote those for the separable state $ |\psi\rangle_{\mathrm{s}} $.

    图 4  $ \varepsilon $设定为$ {17\pi}/{36} $时的实验结果 (a)在基矢$ {|+\rangle, |-\rangle} $和$ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $下, 对光子A进行测量, 得到4个条件概率$ p_+, $$ p_-,\; p_{\varepsilon},\; p_{\varepsilon^{\perp}} $. 浅蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的条件概率, 橙色柱对应可分态$ |\psi\rangle_{\mathrm{s}} $的条件概率; (b)在测量光子A后, 对光子B投影到指定量子态下的投影概率为$ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. 深蓝色柱对应纠缠态$ |\psi\rangle_{\mathrm{e}} $的投影概率, 粉色柱对应$ |\psi\rangle_{\mathrm{s}} $的投影概率

    Fig. 4.  The experimental results when $\varepsilon $ is set to $ {17\pi}/{36} $: (a) Photon A was measured in the bases $ {|+\rangle, |-\rangle} $ and $ {|\varepsilon\rangle, \left|\varepsilon^{\perp}\right\rangle} $, producing four conditional probabilities: $ p_+,\; p_-,\; p_{\varepsilon},\; p_{\varepsilon^{\perp}} $. Light blue bars correspond to the conditional probabilities of the entangled state $ |\psi\rangle_e $, while orange bars represent those of the separable state $ |\psi\rangle_{\mathrm{s}} $. (b) After the measurement of photon A, photon B is projected onto specific quantum states, resulting in projection probabilities $ \{{\cal{P}} _1, {\cal{P}} _2, {\cal{P}} _3, {\cal{P}} _4\} $. Dark blue bars illustrate the projection probabilities for the entangled state $ |\psi\rangle_{\mathrm{e }}$, while pink bars denote those for the separable state $ |\psi\rangle_{\mathrm{s}} $.

    Baidu
  • [1]

    Bell J S 1964 Physics Physique Fizika 1 195Google Scholar

    [2]

    Aspect A, Dalibard J, Roger G 1982 Phys. Rev. Lett. 49 1804Google Scholar

    [3]

    Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 81 5039Google Scholar

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [5]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639Google Scholar

    [6]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [7]

    Rijavec S, Carlesso M, Bassi A, Vedral V, Marletto C 2021 New J. Phys. 23 043040Google Scholar

    [8]

    Tilly J, Marshman R J, Mazumdar A, Bose S 2021 Phys. Rev. A 104 052416Google Scholar

    [9]

    Marshman R J, Mazumdar A, Bose S 2020 Phys. Rev. A 101 052110Google Scholar

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124 221102Google Scholar

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101Google Scholar

    [12]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [13]

    Cao J, Cogdell R J, Coker D F, Duan H G, Hauer J, Kleinekathöfer U, Jansen T L C, Mančal T, Miller R J D, Ogilvie J P, Prokhorenko V I, Renger T, Tan H S, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D 2020 Sci. Adv. 6 eaaz4888Google Scholar

    [14]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [15]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401Google Scholar

    [16]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402Google Scholar

    [17]

    Nguyen H C, Bernards F 2020 Eur. Phys. J. D 74 69Google Scholar

    [18]

    Chevalier H, Paige A J, Kim M S 2020 Phys. Rev. A 102 022428Google Scholar

    [19]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017Google Scholar

    [20]

    Feng T, Vedral V 2022 Phys. Rev. D 106 066013Google Scholar

    [21]

    Chen J L, Su H Y, Xu Z P, Pati A K 2016 Sci. Rep. 6 32075Google Scholar

    [22]

    Feng T, Ren C, Feng Q, Luo M, Qiang X, Chen J, Zhou X 2021 Photonics Res. 9 992Google Scholar

    [23]

    Cao H, Morelli S, Rozema L A, Zhang, C, Tavakoli A, Walther P 2024 Phys. Rev. Lett. 133 150201Google Scholar

    [24]

    Morelli S, Yamasaki H, Huber M, Tavakoli A 2022 Phys. Rev. Lett. 128 250501Google Scholar

    [25]

    Shih Y H, Sergienko A V 1994 Phys. Rev. A 50 2564Google Scholar

    [26]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773Google Scholar

  • [1] 李晓玲, 翟淑琴, 刘奎. 基于四波混频的三组份全光量子导引交换.  , 2025, 74(9): 090301. doi: 10.7498/aps.74.20250083
    [2] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画.  , 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [3] 谭维翰, 赵超樱, 郭奇志. N量子比特系统的纠缠判据.  , 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [4] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [5] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引.  , 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响.  , 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [7] 张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量.  , 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [8] 黄江. 弱测量对四个量子比特量子态的保护.  , 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [9] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析.  , 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠.  , 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [12] 李生好, 伍小兵, 黄崇富, 王洪雷. 基于投影纠缠对态算法优化的研究.  , 2014, 63(14): 140501. doi: 10.7498/aps.63.140501
    [13] 卢道明. 弱相干场耦合腔系统中的纠缠特性.  , 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [14] 杨晓阔, 蔡理, 赵晓辉, 冯朝文. 参数不确定量子细胞神经网络与Lorenz超混沌系统的函数投影同步研究.  , 2010, 59(6): 3740-3746. doi: 10.7498/aps.59.3740
    [15] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量.  , 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [16] 徐世民, 李洪奇, 王继锁, 徐兴磊. 双模坐标-动量积分型投影算符及其在量子光学中的应用.  , 2009, 58(4): 2174-2178. doi: 10.7498/aps.58.2174
    [17] 李体俊. 纠缠态投影算符的积分.  , 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [18] 袁都奇. 弱相互作用费米气体的不稳定性判据.  , 2006, 55(8): 3912-3915. doi: 10.7498/aps.55.3912
    [19] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] 朱建阳. 诱导引力理论中宇宙场的三次量子化.  , 1995, 44(9): 1489-1497. doi: 10.7498/aps.44.1489
计量
  • 文章访问数:  359
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-02
  • 修回日期:  2025-03-20
  • 上网日期:  2025-04-08
  • 刊出日期:  2025-06-05

/

返回文章
返回
Baidu
map