搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单个量子级联激光器的大气多组分测量方法

周超 张磊 李劲松

引用本文:
Citation:

基于单个量子级联激光器的大气多组分测量方法

周超, 张磊, 李劲松

Detection of atmospheric multi-component based on a single quantum cascade laser

Zhou Chao, Zhang Lei, Li Jin-Song
PDF
导出引用
  • 利用单个新型中红外量子级联激光器作为激光光源,结合长程光学吸收池技术开展了大气多组分同时测量方法的研究.通过结合基于自适应性Savitzky-Golay滤波的数据处理算法,有效地提高了系统检测灵敏度和光谱分辨率.研究结果表明,在1 s的时间分辨率和1 atm压力条件下,采用二次微分探测技术可实现CO,N2O和H2O测量精度分别为8.20 ppb,7.90 ppb和64.00 ppm(1 ppb=10-9,1 ppm=10-6);通过提高信号平均时间,在最佳的积分时间(85 s)时,系统可实现的最小检测限分别为1.25 ppb(CO),1.15 ppb(N2O)和35.77 ppm(H2O).整个系统具有结构紧凑,成本相对较低,通过选择其他波段的量子级联激光器的激光光源,即可实现对其他分子的实时分析.本系统可广泛应用于大气化学等领域的应用研究.
    Quantum cascade lasers (QCLs) are relatively new sources of mid-infrared radiation (between 2.5 m and 25 m), and are very well suited to the application of in-field trace gas sensing, mainly due to their superiority of being robust, compact, wavelength-versatile, narrow line width and low power consumption. All these advantages make the laser absorption spectroscopy based on QCL light sources become one of the most popular technologies for the quantitative chemical detection in a variety of fields including atmospheric environmental monitoring, chemical analysis, industrial process control, medical diagnostics, security or bio-medical studies, etc. In the present work, a highly sensitive mid-infrared gas sensor employing a single continuous-wave distributed feedback QCL and an astigmatic multi-path optical absorption cell is demonstrated for the simultaneous measurement of atmospheric carbon monoxide (CO), nitrous oxide (N2O) and water vapor (H2O). By combining with an adaptive Savitzky-Golay (S-G) filter signal processing algorithm, the detection sensitivity and spectral resolution of the QCL sensor system are significantly improved. Compared with the traditional wavelet transform based signal de-noising technique, the developed adaptive S-G smoothing filter shows obvious advantages in terms of computational efficiency and selection of the optimal filter parameters, namely only two filter parameters (the width of the smoothing window and the degree of the smoothing polynomial) need to be considered. Currently, the QCL sensor system is estimated for the long term measurement of ambient air in laboratory environment. The results show that measurement precisions of 8.20 ppb (1 ppb=10-9) for CO, 7.90 ppb for N2O, and 64.00 ppm (1 ppm=10-6) for H2O at 1 s time resolution and 1 atmospheric pressure (atm) are obtained by using the quadratic differential detection scheme, which can be further improved to 1.25 ppb (for CO), 1.15 ppb (for N2O) and 35.77 ppm (for H2O) by increasing average time up to 85 s, respectively. On the whole, the QCL sensor system has significant features of portability and low-cost, moreover, it can be easily modified for the real-time analysis of other gas molecules through the choosing of corresponding QCL light sources. The QCL gas sensor can be widely used in the field of atmospheric chemistry and other applications. Future work will focus on H2O induced broadening coefficients for CO and N2O transitions near 4.57 m, which will be updated for the developed multi-species QCL sensor system, thus resolving the influence of water vapor broadening effect and achieving the measurement of gas concentration in a high humid environment with sub-percent precision.
      通信作者: 李劲松, jingsong_li@ahu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFC0302202)、国家自然科学基金(批准号:61675005,61440010)、安徽省自然科学基金(批准号:1508085MF118)、安徽省科技攻关项目(批准号:1501041136)、安徽省留学回国人员科技活动资金(批准号:J05015143)、安徽大学人才引进基金(批准号:10117700014)和学校创新训练和科研训练计划(批准号:J10118515790,J10118520289)资助的课题.
      Corresponding author: Li Jin-Song, jingsong_li@ahu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0302202), the National Natural Science Foundation of China (Grant Nos. 61675005, 61440010), the Natural Science Fund of Anhui Province, China (Grant No. 1508085MF118), the Key Science and Technology Development Program of Anhui Province, China (Grant No. 1501041136), the Anhui Scholarship Council of China (Grant No. J05015143), the Anhui University Personnel Recruiting Project of Academic and Technical Leaders, China (Grant No. 10117700014), and the Undergraduate Research Program, China (Grant Nos. J10118515790, J10118520289).
    [1]

    Liu Y Y, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 220701 (in Chinese) [刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂 2013 62 220701]

    [2]

    Ma Y, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

    [3]

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867 (in Chinese) [王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 56 3867]

    [4]

    Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese) [贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2016 65 128701]

    [5]

    Zhao Y, Zhao X H, Wang Z, Zhang R, Wang Y 2015 Spectrosc. Spect. Anal. 35 3224 (in Chinese) [赵迎, 赵学玒, 王喆, 张锐, 汪曣 2015 光谱学与光谱分析 35 3224]

    [6]

    Curl R F, Capasso F, Gmachl C, Kosterev A A, McManus B, Lewicki R, Tittel F K 2010 Chem. Phys. Lett. 487 1

    [7]

    Li J S, Chen W, Fischer H 2013 Appl. Spectrosc. Rev. 48 523

    [8]

    Li J S, Parchatka U, Fischer H 2013 Sens. Actuat. B 182 659

    [9]

    Tao L, Sun K, Khan M A, Miller D J, Zondlo M A 2012 Opt. Express 20 28106

    [10]

    Ren W, Jiang W Z, Tittel F K 2014 Appl. Phys. B 117 245

    [11]

    Dong L, Yu Y, Li C, So S, Tittel F K 2015 Opt. Express 23 19821

    [12]

    Dong L, Tittel F K, Li C, Sanchez P N, Wu H, Zheng C, Yu Y, Sampaolo A, Griffin R J 2016 Opt. Express 24 A528

    [13]

    Dong L, Li C, Sanchez N P, Gluszek A K, Griffin R J, Tittel F K 2016 Appl. Phys. Lett. 108 011106

    [14]

    Yu Y, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391

    [15]

    Wen Z Q, Chen G, Peng C, Yuan W Q 2013 Spectrosc. Spect. Anal. 33 949 (in Chinese) [温中全, 陈刚, 彭琛, 袁伟青 2013 光谱学与光谱分析 33 949]

    [16]

    Ma Y, He Y, Yu X, Zhang J, Sun R, Tittel F K 2016 Appl. Phys. Lett. 108 091115

    [17]

    Tang Y, Liu W, Kan R, Liu J, He Y, Zhang Y, Xu Z, Ruan J, Geng H 2011 Opt. Express 19 20224

    [18]

    Tan S, Liu W F, Wang L J, Zhang J C, Li L, Liu J Q, Liu F Q, Wang Z G 2012 Spectrosc. Spect. Anal. 32 1251 (in Chinese) [谭松, 刘万峰, 王利军, 张锦川, 李路, 刘俊岐, 刘峰奇, 王占国 2012 光谱学与光谱分析 32 1251]

    [19]

    Savitzky A, Golay M J 1964 Anal. Chem. 36 1627

    [20]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, LeRoy R J, Li G, Long D, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S A, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [21]

    Li J S, Deng H, Li P F, Yu B L 2015 Appl. Phys. B 120 207

    [22]

    Li J S, Parchatka U, Fischer H 2012 Appl. Phys. B 108 951

    [23]

    Werle P, Miicke R, Slemr F 1993 Appl. Phys. B 57 131

  • [1]

    Liu Y Y, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 220701 (in Chinese) [刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂 2013 62 220701]

    [2]

    Ma Y, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

    [3]

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867 (in Chinese) [王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 56 3867]

    [4]

    Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese) [贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2016 65 128701]

    [5]

    Zhao Y, Zhao X H, Wang Z, Zhang R, Wang Y 2015 Spectrosc. Spect. Anal. 35 3224 (in Chinese) [赵迎, 赵学玒, 王喆, 张锐, 汪曣 2015 光谱学与光谱分析 35 3224]

    [6]

    Curl R F, Capasso F, Gmachl C, Kosterev A A, McManus B, Lewicki R, Tittel F K 2010 Chem. Phys. Lett. 487 1

    [7]

    Li J S, Chen W, Fischer H 2013 Appl. Spectrosc. Rev. 48 523

    [8]

    Li J S, Parchatka U, Fischer H 2013 Sens. Actuat. B 182 659

    [9]

    Tao L, Sun K, Khan M A, Miller D J, Zondlo M A 2012 Opt. Express 20 28106

    [10]

    Ren W, Jiang W Z, Tittel F K 2014 Appl. Phys. B 117 245

    [11]

    Dong L, Yu Y, Li C, So S, Tittel F K 2015 Opt. Express 23 19821

    [12]

    Dong L, Tittel F K, Li C, Sanchez P N, Wu H, Zheng C, Yu Y, Sampaolo A, Griffin R J 2016 Opt. Express 24 A528

    [13]

    Dong L, Li C, Sanchez N P, Gluszek A K, Griffin R J, Tittel F K 2016 Appl. Phys. Lett. 108 011106

    [14]

    Yu Y, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391

    [15]

    Wen Z Q, Chen G, Peng C, Yuan W Q 2013 Spectrosc. Spect. Anal. 33 949 (in Chinese) [温中全, 陈刚, 彭琛, 袁伟青 2013 光谱学与光谱分析 33 949]

    [16]

    Ma Y, He Y, Yu X, Zhang J, Sun R, Tittel F K 2016 Appl. Phys. Lett. 108 091115

    [17]

    Tang Y, Liu W, Kan R, Liu J, He Y, Zhang Y, Xu Z, Ruan J, Geng H 2011 Opt. Express 19 20224

    [18]

    Tan S, Liu W F, Wang L J, Zhang J C, Li L, Liu J Q, Liu F Q, Wang Z G 2012 Spectrosc. Spect. Anal. 32 1251 (in Chinese) [谭松, 刘万峰, 王利军, 张锦川, 李路, 刘俊岐, 刘峰奇, 王占国 2012 光谱学与光谱分析 32 1251]

    [19]

    Savitzky A, Golay M J 1964 Anal. Chem. 36 1627

    [20]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, LeRoy R J, Li G, Long D, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S A, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [21]

    Li J S, Deng H, Li P F, Yu B L 2015 Appl. Phys. B 120 207

    [22]

    Li J S, Parchatka U, Fischer H 2012 Appl. Phys. B 108 951

    [23]

    Werle P, Miicke R, Slemr F 1993 Appl. Phys. B 57 131

  • [1] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究.  , 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [2] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测.  , 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [3] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究.  , 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [4] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量.  , 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [5] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究.  , 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体.  , 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [8] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性.  , 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展.  , 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [10] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究.  , 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [11] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制.  , 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [12] 汤媛媛, 刘文清, 何亚柏, 阮俊, 许振宇, 姚路, 阚瑞峰. 室温脉冲QCL光谱特性实验研究.  , 2012, 61(24): 244206. doi: 10.7498/aps.61.244206
    [13] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现.  , 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [14] 谭智勇, 郭旭光, 曹俊诚, 黎华, 韩英军. 基于太赫兹量子阱探测器的太赫兹量子级联激光器发射谱研究.  , 2010, 59(4): 2391-2395. doi: 10.7498/aps.59.2391
    [15] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究.  , 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [16] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究.  , 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征.  , 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [18] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究.  , 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [19] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计.  , 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
    [20] 胡水明, 何圣贵, 林 海, 程继新, 王湘淮, 郑晶晶, 成国胜, 朱清时. 高分辨傅里叶变换激光腔内吸收光谱方法:原理和应用.  , 2000, 49(8): 1435-1440. doi: 10.7498/aps.49.1435
计量
  • 文章访问数:  6189
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-01-17
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map