-
Atmospheric greenhouse gases have great influence on the climate forcing, which is important to human being and also for natural systems. Nitrous oxide (N2O), such as carbon dioxide and methane, is an important greenhouse gas. It plays an important role in the atmospheric environment. Therefore, sensitive measurement of N2O concentration is of significance for studying the atmospheric environment. In this paper, a photoacoustic spectroscopy (PAS) system based on 7.6 m mid infrared quantum cascade laser combined with resonant PAS technique is established for the sensitive detection of N2O concentration. The PAS has been regarded as a highly sensitive and selective technique to measure trace gases. Compared with laser absorption spectroscopy, the PAS offers several intrinsic attractive features including ultra-compact size and no cross-response of light scattering. In addition, the signal of PAS is recorded with low-cost wavelength-independent acoustic transducer. The performance of the developed system is optimized and improved based on the traditional photoacoustic spectroscopic detection. Dual beam enhancement method is used to increase the effective optical power which effectively improves the detection sensitivity of the system. The N2O absorption line at 1307.66 cm-1 is chosen as the target line, and an operation pressure of 50 kPa is selected for reducing cross-talking from H2O absorption line. By detecting the photoacoustic signals of a certain concentration of N2O at different modulation frequencies and modulation amplitudes, the optimal modulation frequency and modulation amplitude of the system are determined to be 800 Hz and 90 mV, respectively. Different concentrations of N2O gas are detected under the optimized parameters, and calibration curve of the system, that is, the curve of photoacoustic signal versus concentration of N2O is obtained, which shows good linearity. The experimental results show that the minimum detection limit of the system is 150 ppb at a pressure of 50 kPa with an integration time of 30 ms. The system noise can be further reduced by increasing the averaging time. A minimum detection limit of 37 ppb is achieved by averaging signals 100 times, and the signal of N2O in the atmosphere is obtained.
[1] Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43
[2] Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123
[3] Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483
[4] Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130
[5] Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1
[6] Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779
[7] Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617
[8] Kerr E L, Atwood J G 1968 Appl. Opt. 7 915
[9] Kreuzer L B 1971 J. Appl. Phys. 42 2934
[10] Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103
[11] Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219
[12] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[13] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[14] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632
[15] Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]
[16] Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.
[17] Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666
[18] Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]
[19] Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325
[20] Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391
[21] Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]
[22] Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
[23] Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100
-
[1] Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43
[2] Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123
[3] Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483
[4] Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130
[5] Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1
[6] Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779
[7] Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617
[8] Kerr E L, Atwood J G 1968 Appl. Opt. 7 915
[9] Kreuzer L B 1971 J. Appl. Phys. 42 2934
[10] Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103
[11] Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219
[12] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[13] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[14] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632
[15] Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]
[16] Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.
[17] Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666
[18] Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]
[19] Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325
[20] Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391
[21] Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]
[22] Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
[23] Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100
Catalog
Metrics
- Abstract views: 7378
- PDF Downloads: 281
- Cited By: 0