搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤倏逝波型石英增强光声光谱技术

何应 马欲飞 佟瑶 彭振芳 于欣

引用本文:
Citation:

光纤倏逝波型石英增强光声光谱技术

何应, 马欲飞, 佟瑶, 彭振芳, 于欣

Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy

He Ying, Ma Yu-Fei, Tong Yao, Peng Zhen-Fang, Yu Xin
PDF
导出引用
  • 采用块状光学准直聚焦透镜组的传统石英增强光声光谱(QEPAS)技术存在体积难以缩减,结构稳定性不佳,无法适应空间狭小、振动复杂的特殊环境等缺点.基于此,将光纤倏逝波技术与QEPAS技术相结合,提出了一种新型微纳结构光纤QEPAS痕量气体检测技术.实验中,为了提高QEPAS系统信号幅值,优化了石英音叉与激光束的空间位置、激光波长调制深度,同时对比了两种不同共振频率的石英音叉,最终采用共振频率较低的30.720 kHz石英音叉作为声波探测元件,获得的检测极限为6.2510-4(体积分数),归一化噪声等效吸收系数为4.1810-7cm-1WHz-1/2.
    In a conventional system of quartz-enhanced photoacoustic spectroscopy (QEPAS), the size of block-like optical collimation focusing lens group is difficult to reduce, and the structural stability is poor, which makes it hard to adapt itself to some special conditions, such as narrow space and vibrating circumstance. Based on this situation, in this research the fiber evanescent wave technique is combined with QEPAS. Therefore, trace gas detection for acetylene (C2H2) based on an all-fiber structural QEPAS system is developed. To obtain the characteristics of fiber evanescent wave, the optical distribution of micro structural fiber is simulated and the evanescent wave power ratio is calculated based on the COMSOL Multiphysics software. In order to increase the QEPAS 2f signal amplitude, the optical path between fiber taper and quartz tuning fork (QTF) and the laser wavelength modulation depth are optimized. In addition, two kinds of QTFs with different resonant frequencies are optimized. Finally, a QTF with a lower resonant frequency of 30.720 kHz is adopted as the acoustic wave transducer, and a minimum detection limit (MDL) of 6.2510-4 (volume fraction) is obtained with a laser wavelength modulation depth of 0.24 cm-1. To investigate the evanescent wave power of micro structural fiber, the fiber taper diameter is measured by a scanning electron microscope. Subsequently, by combining the diameter of fiber taper with the theoretical calculation results, we determine an evanescent wave power of 455.9 W, and the normalization of noise equivalent absorption (NNEA) which indicates the sensor sensitivity is 4.1810-7 cm-1WHz-1/2.
      通信作者: 马欲飞, mayufei@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61505041)、黑龙江省自然科学基金(批准号:F2015011)、中国博士后科学基金特别资助(批准号:2015T80350)、中国博士后科学基金面上项目(批准号:2014M560262)、黑龙江省博士后科学基金(批准号:LBH-Z14074,LBH-TZ0507)、中央高校基本科研业务费专项资金、哈尔滨市应用技术研究与开发项目(批准号:2016RAQXJ140)和国家重大科学仪器设备开发专项(批准号:2012YQ040164)资助的课题.
      Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505041), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015011), the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015T80350), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M560262), the Postdoctoral Fund of Heilongjiang Province, China (Grant Nos. LBH-Z14074, LBH-TZ0507), the Fundamental Research Funds for the Central Universities, the Application Technology Research and Development Projects of Harbin, China (Grant No. 2016RAQXJ140), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2012YQ040164).
    [1]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [2]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [3]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [4]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [5]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

    [6]

    Zheng H, Yin X, Zhang G F, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T 2015 Appl. Phys. Lett. 107 221903

    [7]

    Ma Y F, He Y, Zhang L G, Yu X, Zhang J B, Sun R, Tittel F K 2017 Appl. Phys. Lett. 110 031107

    [8]

    Liu K, Zhao W, Wang L, Tan T, Wang G, Zhang W, Gao X, Chen W 2015 Opt. Commun. 340 126

    [9]

    Dong L, Yu Y J, Li C G, So S, Tittel F K 2015 Opt. Express 23 19821

    [10]

    Ma Y F, He Y, Yu X, Chen C, Sun R, Tittel F K 2016 Sensor. Actuat. B 233 388

    [11]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R, Tittel F K 2015 Appl. Phys. Lett. 107 021106

    [12]

    Ma Y F, He Y, Yu X, Zhang J B, Sun R 2016 Appl. Phys. Lett. 108 091115

    [13]

    Marshall S T, Schwartz D K, Medlin J W 2009 Sensor. Actuat. B 136 315

    [14]

    Miller K L, Morrison E, Marshall S T, Medlin J W 2011 Sensor. Actuat. B 156 924

    [15]

    Webber M E, Pushkarsky M, Patel C K N 2003 Appl. Opt. 42 2119

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

  • [1]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [2]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [3]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [4]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [5]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

    [6]

    Zheng H, Yin X, Zhang G F, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T 2015 Appl. Phys. Lett. 107 221903

    [7]

    Ma Y F, He Y, Zhang L G, Yu X, Zhang J B, Sun R, Tittel F K 2017 Appl. Phys. Lett. 110 031107

    [8]

    Liu K, Zhao W, Wang L, Tan T, Wang G, Zhang W, Gao X, Chen W 2015 Opt. Commun. 340 126

    [9]

    Dong L, Yu Y J, Li C G, So S, Tittel F K 2015 Opt. Express 23 19821

    [10]

    Ma Y F, He Y, Yu X, Chen C, Sun R, Tittel F K 2016 Sensor. Actuat. B 233 388

    [11]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R, Tittel F K 2015 Appl. Phys. Lett. 107 021106

    [12]

    Ma Y F, He Y, Yu X, Zhang J B, Sun R 2016 Appl. Phys. Lett. 108 091115

    [13]

    Marshall S T, Schwartz D K, Medlin J W 2009 Sensor. Actuat. B 136 315

    [14]

    Miller K L, Morrison E, Marshall S T, Medlin J W 2011 Sensor. Actuat. B 156 924

    [15]

    Webber M E, Pushkarsky M, Patel C K N 2003 Appl. Opt. 42 2119

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

  • [1] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析.  , 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [2] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测.  , 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [3] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法.  , 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [4] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [5] 徐静阳, 方少波, 周婧. 利用光谱和质谱成像技术实现指纹痕量检测.  , 2019, 68(6): 068701. doi: 10.7498/aps.68.20190174
    [6] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [7] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器.  , 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [8] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展.  , 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [9] 赵彦东, 方勇华, 李扬裕, 吴军, 李大成, 崔方晓, 刘家祥, 王安静. 基于椭圆腔共振的石英增强光声光谱理论研究.  , 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [10] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究.  , 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [11] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法.  , 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [12] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素.  , 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [13] 尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂. 基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化.  , 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [14] 张锐, 赵学玒, 赵迎, 王喆, 汪曣. 激光器特性在痕量气体检测中的影响.  , 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [15] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究.  , 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [16] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱.  , 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [17] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺. 单组分双分析通道红外气体检测方法研究.  , 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [18] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量.  , 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [19] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究.  , 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [20] 邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得. 用于气体痕量检测的中红外空心布拉格光纤.  , 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
计量
  • 文章访问数:  7140
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-21
  • 修回日期:  2017-09-22
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map