Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers

Zhu Yong-Hao Li Hua Wan Wen-Jian Zhou Tao Cao Jun-Cheng

Citation:

Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers

Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The single lobe far-field patterns produced from terahertz quantum cascade lasers (QCLs) are greatly demanded for various applications, such as imaging, data transmission, etc. However, for a ridge waveguide terahertz QCL, the far-field beam divergence is large due to the fact that the waveguide aperture is far smaller than the terahertz wavelength. This is the case typically for double-metal waveguide terahertz QCL which emits terahertz photons in almost every direction in the space. Even for a single plasmon waveguide terahertz QCL, the divergence angle is as large as 30 in both horizontal and vertical direction. Here, in this work we design and fabricate a double metal third-order distributed feedback terahertz QCL emitting around 4.3 THz, and investigate the characteristics of the longitudinal and transverse modes. This work aims to achieve high beam quality for terahertz QCL by exploiting the third-order distributed feedback geometry, and in the meantime to achieve single longitudinal mode operation. The electromagnetic field distribution in the waveguide is modelled by employing a finite element method. The mode selection mechanism is studied by using the eigen frequency analysis, and the far-field beam is simulated by applying the near-field to far-field Fourier transform technique. The QCL active region used in this work is based on the resonant-phonon design, which is grown by a molecular beam epitaxy (MBE) system on a semi-insulating GaAs (100) substrate. The wafer bonding and traditional semiconductor device fabrication technology, i.e., optical lithography, electron beam evaporation, lift-off, wet and dry etching, are used to process the MBE-growth wafer into the third-order distributed feedback geometry with double-metal waveguides. By carefully designing the grating structures and optimizing the fabrication process, we achieve third-order distributed feedback terahertz QCL with quasi-single-longitudinal mode operation and single lobe far-field beam pattern with low beam divergence in both vertical and horizontal directions. The effect of grating duty cycle on the far-field beam divergence is systematically studied theoretically and experimentally. By the simulation, we finally achieve the divergence angle of 1213 for a third-order distributed feedback laser with a grating duty cycle of 12% that results in an effective refractive index close to 3. The experimental results show good agreement with the simulation. There is still room to further reduce the beam divergence of third-order distributed feedback terahertz QCL by improve the accuracy of the simulation and the fabrication.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn ; Cao Jun-Cheng, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn
    • Funds: Project supported by the Hundred-Talent Program of Chinese Academy of Sciences, the National Basic Research Program of China (Grant No. 2014CB339803), the Major National Development Project of Scientific Instrument and Equipment of China (Grant No. 2011YQ150021), the National Natural Science Foundation of China (Grant Nos. 61575214, 61404149, 61404150, 61604161), and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300, 15560722000, 14ZR1447400, 15YF1414400, 15JC1403800).
    [1]

    Song H J, Ajito K, Mumoto Y, Wakatsuki A, Nagatsua T, Kukutsu N 2012 Electron. Lett. 48 953

    [2]

    Asada M, Suzuki S, Kishimoto N 2008 Jpn. J. Appl. Phys. 47 4375

    [3]

    Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier N, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T 2016 Opt. Express 24 11299

    [4]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156

    [5]

    Borri S, Patimisco P, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2013 Appl. Phys. Lett. 103 021105

    [6]

    Vitiello M S, Consolino L, Bartalini S, Taschin A, Tredicucci A, Inguscio M, Natale P D 2012 Nat. Photon. 6 525

    [7]

    Kumar S 2011 IEEE J. Sel. Top. Quant. 17 38

    [8]

    Wienold M, Röben B, Schrottke L, Sharma R, Tahraoui A, Biermann K, Grahn H T 2014 Opt. Express 22 3334

    [9]

    Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124

    [10]

    Li H, Cao J C, Tan Z Y, Feng S L 2008 J. Appl. Phys. 104 103101

    [11]

    Wienold M, Tahraoui A, Schrottke L, Sharma R, L X, Biermann K, Hey R, Grahn H T 2012 Opt. Express 20 11207

    [12]

    Kumar S, Williams B S, Qin Q, Lee A W M, Hu Q 2007 Opt. Express 15 113

    [13]

    Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S 2014 Appl. Phys. Lett. 104 241102

    [14]

    Benz A, Fasching G, Deutsch C, Andrews A M, Unterrainer K, Klang P, Schrenk W, Strasser G 2007 Opt. Express 15 12418

    [15]

    Liang G Z, Liang H K, Zhang Y, Khanna S P, Li L H, Davies A G, Linfield E, Lim D F, Tan C S, Yu S F, Liu H C, Wang Q J 2013 Appl. Phys. Lett. 102 031119

    [16]

    Xu G Y, Colombelli R, Khanna S P, Belarouci A, Letartre X, Li L H, Linfield E H, Davies A G, Beere H E, Ritchie D A 2012 Nat. Commun. 3 952

    [17]

    Amanti M I, Fischer M, Scalari G, Beck M, Faist J 2009 Nat. Photon. 3 586

    [18]

    Cui M, Hovenier J N, Ren Y, Vercruyssen N, Gao J R, Kao T Y, Hu Q, Reno J L 2013 Appl. Phys. Lett. 102 111113

    [19]

    Amanti M I 2010 Ph. D. Dissertation (Napoli: Universitá degli Studi di Napoli Federico II)

    [20]

    Williams B S, Kumar S, Hu Q, Reno J L 2006 Electron. Lett. 42 89

    [21]

    Xu T H, Yao C, Wan W J, Zhu Y H, Cao J C 2015 Acta Phys. Sin. 64 224212 (in Chinese) [徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚 2015 64 224212]

    [22]

    Wan W J, Yin R, Tan Z Y, Wang F, Han Y J, Cao J C 2013 Acta Phys. Sin. 62 210701 (in Chinese) [万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚 2013 62 210701]

  • [1]

    Song H J, Ajito K, Mumoto Y, Wakatsuki A, Nagatsua T, Kukutsu N 2012 Electron. Lett. 48 953

    [2]

    Asada M, Suzuki S, Kishimoto N 2008 Jpn. J. Appl. Phys. 47 4375

    [3]

    Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier N, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T 2016 Opt. Express 24 11299

    [4]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156

    [5]

    Borri S, Patimisco P, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2013 Appl. Phys. Lett. 103 021105

    [6]

    Vitiello M S, Consolino L, Bartalini S, Taschin A, Tredicucci A, Inguscio M, Natale P D 2012 Nat. Photon. 6 525

    [7]

    Kumar S 2011 IEEE J. Sel. Top. Quant. 17 38

    [8]

    Wienold M, Röben B, Schrottke L, Sharma R, Tahraoui A, Biermann K, Grahn H T 2014 Opt. Express 22 3334

    [9]

    Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124

    [10]

    Li H, Cao J C, Tan Z Y, Feng S L 2008 J. Appl. Phys. 104 103101

    [11]

    Wienold M, Tahraoui A, Schrottke L, Sharma R, L X, Biermann K, Hey R, Grahn H T 2012 Opt. Express 20 11207

    [12]

    Kumar S, Williams B S, Qin Q, Lee A W M, Hu Q 2007 Opt. Express 15 113

    [13]

    Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S 2014 Appl. Phys. Lett. 104 241102

    [14]

    Benz A, Fasching G, Deutsch C, Andrews A M, Unterrainer K, Klang P, Schrenk W, Strasser G 2007 Opt. Express 15 12418

    [15]

    Liang G Z, Liang H K, Zhang Y, Khanna S P, Li L H, Davies A G, Linfield E, Lim D F, Tan C S, Yu S F, Liu H C, Wang Q J 2013 Appl. Phys. Lett. 102 031119

    [16]

    Xu G Y, Colombelli R, Khanna S P, Belarouci A, Letartre X, Li L H, Linfield E H, Davies A G, Beere H E, Ritchie D A 2012 Nat. Commun. 3 952

    [17]

    Amanti M I, Fischer M, Scalari G, Beck M, Faist J 2009 Nat. Photon. 3 586

    [18]

    Cui M, Hovenier J N, Ren Y, Vercruyssen N, Gao J R, Kao T Y, Hu Q, Reno J L 2013 Appl. Phys. Lett. 102 111113

    [19]

    Amanti M I 2010 Ph. D. Dissertation (Napoli: Universitá degli Studi di Napoli Federico II)

    [20]

    Williams B S, Kumar S, Hu Q, Reno J L 2006 Electron. Lett. 42 89

    [21]

    Xu T H, Yao C, Wan W J, Zhu Y H, Cao J C 2015 Acta Phys. Sin. 64 224212 (in Chinese) [徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚 2015 64 224212]

    [22]

    Wan W J, Yin R, Tan Z Y, Wang F, Han Y J, Cao J C 2013 Acta Phys. Sin. 62 210701 (in Chinese) [万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚 2013 62 210701]

  • [1] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [4] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [5] Gao Qiang, Li Xiao-Qiu, Zhou Zhi-Peng, Sun Lei. Far-field super-resolution scanning imaging based on fractal resonator. Acta Physica Sinica, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [7] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [9] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] Wei Wei-Hua, Li Mu-Tian, Liu Mo-Nan. Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing. Acta Physica Sinica, 2018, 67(6): 064203. doi: 10.7498/aps.67.20172395
    [11] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [12] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation. Acta Physica Sinica, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [13] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [14] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [15] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [16] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [17] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [18] Chang Jun, Li Hua, Han Ying-Jun, Tan Zhi-Yong, Cao Jun-Cheng. Material growth and characterization of terahertz quantum-cascade lasers. Acta Physica Sinica, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [19] Ding Li, Liu Dai-Zhong, Gao Yan-Qi, Zhu Bao-Qiang, Zhu Jian, Peng Zeng-Yun, Zhu Jian-Qiang, Yu Li-Jun. New far-field detection technique for beam alignment system in high power laser facility. Acta Physica Sinica, 2008, 57(9): 5713-5717. doi: 10.7498/aps.57.5713
    [20] Wang Zhong-Chun. The quantization of a mesoscopic dissipation transmission line. Acta Physica Sinica, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
Metrics
  • Abstract views:  6903
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2017
  • Accepted Date:  24 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map