搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子注入ZnO薄膜的拉曼光谱研究

臧航 王志光 庞立龙 魏孔芳 姚存峰 申铁龙 孙建荣 马艺准 缑洁 盛彦斌 朱亚滨

引用本文:
Citation:

离子注入ZnO薄膜的拉曼光谱研究

臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨

Raman investigation of ion-implanted ZnO films

Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin
PDF
导出引用
  • 室温下,用80 keV N+和400 keV Xe+离子注入ZnO薄膜,注入剂量分别为5.0×1014—1.0×1017/cm2和2.0×1014—5.0×1015/cm2.利用拉曼散射技术对注入前后的ZnO薄膜进行光谱测量和分析,研究了样品的拉曼光谱随离子注入剂量的变化规律.实验结果发现,未进行离子注入的样品在99,435 cm<
    ZnO thin films were implanted at room temperature with 80 keV N+ or 400 keV Xe+ ions. The implantation fluences of N+ and Xe+ ranged from 5.0×1014 to 1.0×1017/cm2, and from 2.0×1014 to 5.0×1015/cm2, respectively. The samples were analyzed using Raman spectroscopy and the Raman scattering modes of the N- and Xe-ion implanted samples varying with implantation fluences were investigated. It was found that Raman peaks (bands) at 130 and 578 cm-1 appeared in the spectra of ion-implanted ZnO samples, which are independent of the ion species, whereas a new peak at 274 cm-1 was found only in N-ion implanted samples, and Raman band at 470 cm-1 was found clearly in Xe-ion implanted samples. The relative intensity (peak area) increased with the increasing of the implantation fluences. From the comparison of the Raman spectra of N- and Xe-ion implanted ZnO samples and considering the damage induced by the ions, we analyzed the origin of the observed new Raman peaks (bands) and discussed the structure changes of ZnO films induced by N- and Xe-ion implantations.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB832902)和国家自然科学基金(批准号:10835010)资助的课题.
    [1]

    zgür V, Alivov Y I, Liu C, Teke A, Reshchikov M A, Do Agˇ an S, Avrutin V, Cho S J, Morko H 2005 J. Appl. Phys. 98 041301

    [2]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2005 Prog. Mater. Sci. 50 293

    [3]

    Zhang D H, Wang Q P, Xue Z Y 2003 Acta Phys. Sin. 52 1484 (in Chinese) [张德恒、王卿璞、薛忠营 2003 52 1484]

    [4]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [5]

    Kucheyev S O, Williams J S, Jagadish C, Zou J, Evans C, Nelson A J, Hamza A V 2003 Phys. Rev. B 67 094115

    [6]

    Chen Z Q, Maekawa M, Yamamoto S, Kawasuso A, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2004 Phys. Rev. B 69 035210

    [7]

    Wang K, Ding Z B, Chen T X, Chen D, Yao S D, Fu Z X 2008 Nucl. Instrum. Meth. Phys. Res. B 266 2962

    [8]

    Chen Z Q, Kawasuso A 2006 Acta Phys. Sin. 55 4353 (in Chinese) [陈志权、河裾厚男 2006 55 4353]

    [9]

    Yu J G, Xing H Z, Zhao Q, Mao H B, Shen Y, Wang J Q, Lai Z S, Zhu Z Q 2006 Solid State Commun. 138 502

    [10]

    Friedrich F, Nickel N H 2007 Appl. Phys. Lett. 91 111903

    [11]

    Li H, Sang J P, Mei F, Ren F, Zhang L, Liu C 253 Appl. Surf. Sci. 253 8524

    [12]

    Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 J. Appl. Phys. 97 013528

    [13]

    Reuss F, Kirchner C, Gruber Th, Kling R, Maschek S, Limmer W, Waag A, Ziemann P 2004 J. Appl. Phys. 95 3385

    [14]

    Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner A, Alves H R, Hofmann D M, Meyer B K 2002 Appl. Phys. Lett. 80 1909

    [15]

    Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 Appl. Phys. Lett. 83 1974

    [16]

    Wang J B, Zhong H M, Li Z F, Lu W 2006 Appl. Phys. Lett. 88 101913

    [17]

    Zang H, Wang Z G, Wei K F, Sun J R, Yao C F, Shen T L, Ma Y Z, Yang C S, Pang L L, Zhu Y B 2010 Nuclear Physics Review 27 87(in Chinese)[臧 航、王志光、魏孔芳、孙建荣、姚存峰、申铁龙、马艺准、杨成绍、庞立龙、朱亚斌 2010 原子核物理评论 27 87]

    [18]

    Damen T C, Porto S P S, Tell B 1966 Phys. Rev. 142 570

    [19]

    Kennedy J, Sundrakannan B, Katiyar R S, Markwitz A, Li Z, Gao W 2008 Current Appl. Phys. 8 291

    [20]

    Liu X J, Song C, Zeng F, Pan F 2008 Thin Solid Films 516 8757

    [21]

    Du C L, Gu Z B, Lu M H, Wang J, Zhang S T, Zhao J, Cheng G X, Heng H, Chen Y F 2006 J. Appl. Phys. 99 123515

  • [1]

    zgür V, Alivov Y I, Liu C, Teke A, Reshchikov M A, Do Agˇ an S, Avrutin V, Cho S J, Morko H 2005 J. Appl. Phys. 98 041301

    [2]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2005 Prog. Mater. Sci. 50 293

    [3]

    Zhang D H, Wang Q P, Xue Z Y 2003 Acta Phys. Sin. 52 1484 (in Chinese) [张德恒、王卿璞、薛忠营 2003 52 1484]

    [4]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [5]

    Kucheyev S O, Williams J S, Jagadish C, Zou J, Evans C, Nelson A J, Hamza A V 2003 Phys. Rev. B 67 094115

    [6]

    Chen Z Q, Maekawa M, Yamamoto S, Kawasuso A, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2004 Phys. Rev. B 69 035210

    [7]

    Wang K, Ding Z B, Chen T X, Chen D, Yao S D, Fu Z X 2008 Nucl. Instrum. Meth. Phys. Res. B 266 2962

    [8]

    Chen Z Q, Kawasuso A 2006 Acta Phys. Sin. 55 4353 (in Chinese) [陈志权、河裾厚男 2006 55 4353]

    [9]

    Yu J G, Xing H Z, Zhao Q, Mao H B, Shen Y, Wang J Q, Lai Z S, Zhu Z Q 2006 Solid State Commun. 138 502

    [10]

    Friedrich F, Nickel N H 2007 Appl. Phys. Lett. 91 111903

    [11]

    Li H, Sang J P, Mei F, Ren F, Zhang L, Liu C 253 Appl. Surf. Sci. 253 8524

    [12]

    Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 J. Appl. Phys. 97 013528

    [13]

    Reuss F, Kirchner C, Gruber Th, Kling R, Maschek S, Limmer W, Waag A, Ziemann P 2004 J. Appl. Phys. 95 3385

    [14]

    Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner A, Alves H R, Hofmann D M, Meyer B K 2002 Appl. Phys. Lett. 80 1909

    [15]

    Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 Appl. Phys. Lett. 83 1974

    [16]

    Wang J B, Zhong H M, Li Z F, Lu W 2006 Appl. Phys. Lett. 88 101913

    [17]

    Zang H, Wang Z G, Wei K F, Sun J R, Yao C F, Shen T L, Ma Y Z, Yang C S, Pang L L, Zhu Y B 2010 Nuclear Physics Review 27 87(in Chinese)[臧 航、王志光、魏孔芳、孙建荣、姚存峰、申铁龙、马艺准、杨成绍、庞立龙、朱亚斌 2010 原子核物理评论 27 87]

    [18]

    Damen T C, Porto S P S, Tell B 1966 Phys. Rev. 142 570

    [19]

    Kennedy J, Sundrakannan B, Katiyar R S, Markwitz A, Li Z, Gao W 2008 Current Appl. Phys. 8 291

    [20]

    Liu X J, Song C, Zeng F, Pan F 2008 Thin Solid Films 516 8757

    [21]

    Du C L, Gu Z B, Lu M H, Wang J, Zhang S T, Zhao J, Cheng G X, Heng H, Chen Y F 2006 J. Appl. Phys. 99 123515

  • [1] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究.  , 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [2] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响.  , 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [3] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒.  , 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [4] 杨昌虎, 马忠权, 徐飞, 赵磊, 李凤, 何波. 稀土钇、镧掺杂TiO2薄膜的拉曼谱分析.  , 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [5] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究.  , 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [6] 刘显明, 李斌成, 高卫东, 韩艳玲. 离子注入硅片快速退火后的红外椭偏光谱研究.  , 2010, 59(3): 1632-1637. doi: 10.7498/aps.59.1632
    [7] 付伟佳, 刘志文, 刘明, 牟宗信, 张庆瑜, 关庆丰, 陈康敏. 离子注入Zn的Si(001)基片热氧化制备纳米ZnO团簇及其生长行为研究.  , 2009, 58(8): 5693-5699. doi: 10.7498/aps.58.5693
    [8] 苏海桥, 薛书文, 陈猛, 李志杰, 袁兆林, 付玉军, 祖小涛. Ti离子注入和退火对ZnS薄膜结构和光学性质的影响.  , 2009, 58(10): 7108-7113. doi: 10.7498/aps.58.7108
    [9] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究.  , 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [10] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征.  , 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [11] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究.  , 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [12] 钟红梅, 陈效双, 王金斌, 夏长生, 王少伟, 李志锋, 徐文兰, 陆 卫. 基于离子注入技术的ZnMnO半导体材料的制备及光谱表征.  , 2006, 55(4): 2073-2077. doi: 10.7498/aps.55.2073
    [13] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [14] 刘向绯, 蒋昌忠, 任 峰, 付 强. Ag离子注入非晶SiO2的光学吸收、拉曼谱和透射电镜研究.  , 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [15] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响.  , 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [16] 方志军, 夏义本, 王林军, 张伟丽, 马哲国, 张明龙. Al2O3陶瓷衬底碳离子预注入对金刚石薄膜应力的影响研究.  , 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
    [17] 刘雪芹, 王印月, 甄聪棉, 张静, 杨映虎, 郭永平. 离子注入和固相外延制备Si1-x-yGexCy半导体薄膜.  , 2002, 51(10): 2340-2343. doi: 10.7498/aps.51.2340
    [18] 陈贵宾, 陆卫, 缪中林, 李志锋, 蔡炜颖, 沈学础, 陈昌明, 朱德彰, 胡钧, 李明乾. 离子注入诱导量子阱界面混合效应的光致荧光谱研究.  , 2002, 51(3): 659-662. doi: 10.7498/aps.51.659
    [19] 李晓娜, 聂冬, 董闯, 马腾才, 金星, 张泽. 离子注入合成β-FeSi2薄膜的显微结构.  , 2002, 51(1): 115-124. doi: 10.7498/aps.51.115
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究.  , 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  9282
  • PDF下载量:  1049
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-31
  • 修回日期:  2009-11-19
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map