搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱

梁源 邢怀中 晁明举 梁二军

引用本文:
Citation:

CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱

梁源, 邢怀中, 晁明举, 梁二军

Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra

Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun
PDF
导出引用
  • 用CO2激光烧结合成了负热膨胀材料Sc2(WO4)3和Sc2(MoO4)3. 实验表明, 激光合成负热膨胀材料Sc2(WO4)3和Sc2(MoO4)3属于快速合成技术, 合成一个样品的时间仅需几秒到十几秒, 具有快速凝固的特征; X射线衍射和拉曼光谱分析表明, 所合成的材料为正交相结构, 且具有较高的纯度; 变温拉曼光谱分析表明, 所合成的材料在室温以上没有相变, 但可能有微弱的吸水性; 在对Sc2O3, MoO3, WO3, Sc2(MoO4)3和Sc2(WO4)3拉曼光谱分析的基础上, 给出了激光光子能量及原料和合成产物的声子能级图, 分析了激光烧结合成的机理. 激光光子能量转化为激发声子的能量是光热转化的主要通道, 原料在熔池中反应并快速凝固形成最终产物.
    Negative thermal expansion materials Sc2(MO4)3 (M={W}, Mo) are synthesized with a CO2 laser. It is shown that the synthesis of Sc2(WO4)3 or Sc2(MoO4)3 by laser sintering is a rapid process so that a sample can be synthesized within a few or tens of seconds and has the characteristic of rapid solidification. X-ray diffraction and Raman spectrum analyses demonstrate that the synthesized Sc2(MO4)3 (M={W}, Mo) are crystallized into orthorhombic structures and each have a high purity. Temperature dependent Raman spectrum analysis suggests that the synthesized samples do not have phase transitions above room temperature but possibly have weak hygroscopicities. According to the Raman analyses of MoO3, WO3, Sc2(MoO4)3, and Sc2(WO4)3, we draw a diagram describing their phonon energy levels and the photon energy of the laser, and then assess the mechanism of the synthesis by laser sintering. Transferring the laser photon energy to phonon energy is the channel of light-heat converting. The materials react in the molten pool and are solidified rapidly, forming the final products.
    • 基金项目: 国家自然科学基金 (批准号: 11104252, 11405028)、高等学校博士学科点专项科研基金(批准号: 20114101110003)、郑州市创新团队基金 (批准号: 112PCXTD337) 和中央高校基本科研业务费专项资金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104252, 11405028), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114101110003), the Fund for Science and Technology Innovation Team of Zhengzhou City, China (Grant No. 112PCXTD337), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90

    [2]

    Liang Y, Zhou H Y, Liang E J, Yuan B, Chao M J 2008 Chin. J. Inorg. Chem. 24 1551 (in Chinese) [梁源, 周鸿颖, 梁二军, 袁斌, 晁明举 2008 无机化学学报 24 1551]

    [3]

    Miller W, Smith C W, Mackenzie D S, Evans K E 2009 J. Mater. Sci. 44 5441

    [4]

    Liang E J 2010 Rec. Pat. Mater. Sci. 3 106

    [5]

    Lind C, Coleman M R, Kozy L C, Sharma G R 2011 Phys. Status Solidi B 248 123

    [6]

    Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y J 2008 J. Phys. Chem. A 112 12582

    [7]

    Liang E J, Wang S H, Wu T A 2007 J. Raman Spectrosc. 38 1186

    [8]

    Guo X Y, Cheng C X, Zhang J, Liang E J 2011 J. Light Scatter. 23 228 (in Chinese) [郭向阳, 程春晓, 张洁, 梁二军 2011 光散射学报 23 228]

    [9]

    Sahoo P P, Sumithra S, Madras G, Guru Row T N 2011 Inorg. Chem. 50 8774

    [10]

    Yuan H L, Yuan B H, Li F, Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese) [袁焕丽, 袁保合, 李芳, 梁二军 2012 61 226502]

    [11]

    Guzman-Afonso C, Gonzalez-Silgo C, Gonzalez-Platas J, Torres M E, Lozano-Gorrin A D, Sabalisck N, Sanchez-Fajardo V, Campo J, Rodriguez-Carvajal J 2011 J. Phys. Condens. Matter 23 325402

    [12]

    Marinkovic B A, Jardim P M, De Avillez R R, Rizzo F 2005 Solid State Sci. 7 1377

    [13]

    Wang Z P, Song W B, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 250

    [14]

    Li Z Y, Song W B, Liang E J 2011 J. Phys. Chem. C 115 17806

    [15]

    Xiao X L, Cheng Y Z, Peng J 2008 Solid State Sci. 10 321

    [16]

    Isobe T, Umezome T, Kameshima Y, Nakajima A, Okada K 2009 Mater. Res. Bull. 44 2045

    [17]

    Shang R, Hu Q L, Liu X S, Liang E J, Yuan B, Chao M J 2012 Int. J. Appl. Ceram. Technol. 9 1

    [18]

    Rashmi C, Shrivastava O P 2011 Solid State Sci. 13 444

    [19]

    Xie D Y, Wang Z H, Liu X S, Song W B, Yuan B H, Liang E J 2012 Ceram. Int. 38 3807

    [20]

    Wang X W, Huang Q Z, Deng J X, Yu R B, Chen J, Xing X R 2011 Inorg. Chem. 50 2685

    [21]

    Amos T G, Sleight A W J 2001 Solid State Chem. 160 230

    [22]

    Sanson A, Rocca F, Dalba G, Fornasini P, Grisenti R, Dapiaggi M, Artioli G 2006 Phys. Rev. B 73 214305

    [23]

    Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L, Tucker M G 2008 Science 319 794

    [24]

    Ding P, Liang E J, Jia Y 2008 J. Phys. Condens. Matter 20 275224

    [25]

    Li C W, Tang X, Munoz J A, Keith J B, Tracy S J, Abernathy D L, Fultz B 2011 Phys. Rev. Lett. 107 195504

    [26]

    Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y 2012 Mater. Res. Bull. 47 1113

    [27]

    Chen J, Fan L L, Ren Y, Pan Z, Deng J X, Yu R B, Xing X R 2013 Phys. Rev. Lett. 110 115901

    [28]

    Tong P, Wang B S, Sun Y P 2013 Chin. Phys. B 22 067501

    [29]

    Higgins B, Graeve O A, Edwards D D 2013 J. Am. Ceram. Soc. 96 2402

    [30]

    Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 59 3350]

    [31]

    Suzuki T, Omote A 2004 J. Am. Ceram. Soc. 87 1365

    [32]

    Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J, Liang E J 2014 J. Solid State Chem. 218 15

    [33]

    Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H, Wang J Q 2013 Chin. Phys. Lett. 30 126502

    [34]

    Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F, Ferreira F F 2008 Phys. Stat. Sol. B 245 2514

    [35]

    Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H, Liang E J 2013 J. Alloy. Comp. 553 1

    [36]

    Yan X, Li M, Li J, Cheng X 2011 Appl. Mechan. Mater. 66-68 1808

    [37]

    Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Comp. 339 207

    [38]

    Sumithra S, Umarji A M 2006 Solid State Sci. 8 1453

    [39]

    Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148

    [40]

    Evans J S O, Mary T A 2000 Inter. J. Inorg. Mater. 2 143

    [41]

    Liang E J, Huo H L, Wang Z, Chao M J, Wang J P 2009 Solid State Sci. 11 139

    [42]

    Liang E J, Wang J P, Xu E M, Du Z Y, Chao M J 2008 J. Raman Spectrosc. 39 887

    [43]

    Liang E J, Wu T A, Yuan B, Chao M J, Zhang W F 2007 J. Phys. D: Appl. Phys. 40 3219

    [44]

    Zhang J, Yuan C, Wang J Q, Liang E J, Chao M J 2013 Chin. Phys. B 22 087201

    [45]

    Paraguassu W, Maczka M, Souza Filho A G, Freire P T C, Melo F E A, Mendes Filho J, Hanuza J 2007 J. Vibr. Spectrosc. 44 69

    [46]

    Liang E J, Huo H L, Wang J P, Chao M J 2008 J. Phys. Chem. C 112 6577

    [47]

    Li Q J, Yuan B H, Song W B, Liang E J, Yuan B 2012 Chin. Phys. B 21 046501

    [48]

    Song W B, Yuan C, Li Z Y, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 346 (in Chinese) [宋文博, 袁超, 李志远, 赵艳, 蒋毅坚, 梁二军 2011 光散射学报 23 346]

  • [1]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90

    [2]

    Liang Y, Zhou H Y, Liang E J, Yuan B, Chao M J 2008 Chin. J. Inorg. Chem. 24 1551 (in Chinese) [梁源, 周鸿颖, 梁二军, 袁斌, 晁明举 2008 无机化学学报 24 1551]

    [3]

    Miller W, Smith C W, Mackenzie D S, Evans K E 2009 J. Mater. Sci. 44 5441

    [4]

    Liang E J 2010 Rec. Pat. Mater. Sci. 3 106

    [5]

    Lind C, Coleman M R, Kozy L C, Sharma G R 2011 Phys. Status Solidi B 248 123

    [6]

    Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y J 2008 J. Phys. Chem. A 112 12582

    [7]

    Liang E J, Wang S H, Wu T A 2007 J. Raman Spectrosc. 38 1186

    [8]

    Guo X Y, Cheng C X, Zhang J, Liang E J 2011 J. Light Scatter. 23 228 (in Chinese) [郭向阳, 程春晓, 张洁, 梁二军 2011 光散射学报 23 228]

    [9]

    Sahoo P P, Sumithra S, Madras G, Guru Row T N 2011 Inorg. Chem. 50 8774

    [10]

    Yuan H L, Yuan B H, Li F, Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese) [袁焕丽, 袁保合, 李芳, 梁二军 2012 61 226502]

    [11]

    Guzman-Afonso C, Gonzalez-Silgo C, Gonzalez-Platas J, Torres M E, Lozano-Gorrin A D, Sabalisck N, Sanchez-Fajardo V, Campo J, Rodriguez-Carvajal J 2011 J. Phys. Condens. Matter 23 325402

    [12]

    Marinkovic B A, Jardim P M, De Avillez R R, Rizzo F 2005 Solid State Sci. 7 1377

    [13]

    Wang Z P, Song W B, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 250

    [14]

    Li Z Y, Song W B, Liang E J 2011 J. Phys. Chem. C 115 17806

    [15]

    Xiao X L, Cheng Y Z, Peng J 2008 Solid State Sci. 10 321

    [16]

    Isobe T, Umezome T, Kameshima Y, Nakajima A, Okada K 2009 Mater. Res. Bull. 44 2045

    [17]

    Shang R, Hu Q L, Liu X S, Liang E J, Yuan B, Chao M J 2012 Int. J. Appl. Ceram. Technol. 9 1

    [18]

    Rashmi C, Shrivastava O P 2011 Solid State Sci. 13 444

    [19]

    Xie D Y, Wang Z H, Liu X S, Song W B, Yuan B H, Liang E J 2012 Ceram. Int. 38 3807

    [20]

    Wang X W, Huang Q Z, Deng J X, Yu R B, Chen J, Xing X R 2011 Inorg. Chem. 50 2685

    [21]

    Amos T G, Sleight A W J 2001 Solid State Chem. 160 230

    [22]

    Sanson A, Rocca F, Dalba G, Fornasini P, Grisenti R, Dapiaggi M, Artioli G 2006 Phys. Rev. B 73 214305

    [23]

    Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L, Tucker M G 2008 Science 319 794

    [24]

    Ding P, Liang E J, Jia Y 2008 J. Phys. Condens. Matter 20 275224

    [25]

    Li C W, Tang X, Munoz J A, Keith J B, Tracy S J, Abernathy D L, Fultz B 2011 Phys. Rev. Lett. 107 195504

    [26]

    Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y 2012 Mater. Res. Bull. 47 1113

    [27]

    Chen J, Fan L L, Ren Y, Pan Z, Deng J X, Yu R B, Xing X R 2013 Phys. Rev. Lett. 110 115901

    [28]

    Tong P, Wang B S, Sun Y P 2013 Chin. Phys. B 22 067501

    [29]

    Higgins B, Graeve O A, Edwards D D 2013 J. Am. Ceram. Soc. 96 2402

    [30]

    Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 59 3350]

    [31]

    Suzuki T, Omote A 2004 J. Am. Ceram. Soc. 87 1365

    [32]

    Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J, Liang E J 2014 J. Solid State Chem. 218 15

    [33]

    Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H, Wang J Q 2013 Chin. Phys. Lett. 30 126502

    [34]

    Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F, Ferreira F F 2008 Phys. Stat. Sol. B 245 2514

    [35]

    Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H, Liang E J 2013 J. Alloy. Comp. 553 1

    [36]

    Yan X, Li M, Li J, Cheng X 2011 Appl. Mechan. Mater. 66-68 1808

    [37]

    Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Comp. 339 207

    [38]

    Sumithra S, Umarji A M 2006 Solid State Sci. 8 1453

    [39]

    Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148

    [40]

    Evans J S O, Mary T A 2000 Inter. J. Inorg. Mater. 2 143

    [41]

    Liang E J, Huo H L, Wang Z, Chao M J, Wang J P 2009 Solid State Sci. 11 139

    [42]

    Liang E J, Wang J P, Xu E M, Du Z Y, Chao M J 2008 J. Raman Spectrosc. 39 887

    [43]

    Liang E J, Wu T A, Yuan B, Chao M J, Zhang W F 2007 J. Phys. D: Appl. Phys. 40 3219

    [44]

    Zhang J, Yuan C, Wang J Q, Liang E J, Chao M J 2013 Chin. Phys. B 22 087201

    [45]

    Paraguassu W, Maczka M, Souza Filho A G, Freire P T C, Melo F E A, Mendes Filho J, Hanuza J 2007 J. Vibr. Spectrosc. 44 69

    [46]

    Liang E J, Huo H L, Wang J P, Chao M J 2008 J. Phys. Chem. C 112 6577

    [47]

    Li Q J, Yuan B H, Song W B, Liang E J, Yuan B 2012 Chin. Phys. B 21 046501

    [48]

    Song W B, Yuan C, Li Z Y, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 346 (in Chinese) [宋文博, 袁超, 李志远, 赵艳, 蒋毅坚, 梁二军 2011 光散射学报 23 346]

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱.  , 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [3] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术.  , 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [4] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性.  , 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [5] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211895
    [6] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究.  , 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [7] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性.  , 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [8] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究.  , 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [9] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究.  , 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [10] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [11] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究.  , 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [12] 邓书康, 唐新峰, 张清杰. Zn掺杂p型Ba8Ga16ZnxGe30-x笼合物的合成及热电性能.  , 2007, 56(8): 4983-4988. doi: 10.7498/aps.56.4983
    [13] 熊 聪, 唐新峰, 祁 琼, 邓书康, 张清杰. Ⅰ型锗基笼合物Ba8Ga16-xSbxGe30的合成及热电性能.  , 2006, 55(12): 6630-6636. doi: 10.7498/aps.55.6630
    [14] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征.  , 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [15] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究.  , 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [16] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱.  , 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [17] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度.  , 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [18] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能.  , 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [19] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用.  , 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究.  , 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
计量
  • 文章访问数:  6446
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-09
  • 修回日期:  2014-08-11
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map