-
In this paper, based on the convective heat transfer and conduction principle, the thermal effect analysis model of the directly liquid cooled uniformly pumped thin slab laser is established. The approximate plane stress and the principle of minimum are introduced to describe thermal stress distribution in the thin slab. Firstly, the relationships between the flow velocities in different flow channel thickness values and the convection heat transfer coefficients and also the relationship between flow velocity and coolant temperature rise are studied. Moreover, the influences of different flow channel thickness values on temperature field and thermal stress distribution are analyzed. Finally, the variation trends of wave-front phase distortion with the change of heat power in the case of Zig-zag path and direct path are investigated, respectively. The results reveal that thicker flow channel can achieve stronger heat treatment effects in an appropriate range of the cooled liquid flow rate, and the thermal profile is symmetrical with respect to the center plane of slab. In addition, the longitudinal maximum temperature rise occurs in the outlet; the maximum stress distortions centralize on the both ends and partial sides of slab. It is worthy to mention that the one-dimensional temperature gradient and smaller stress form more probably for thicker flow channel., Furthermore, zig-zag path can alleviate obviously wave-front aberration due to thermo-optic effect. In this paper the thermal effect of the liquid direct cooled thin slab laser is investigated. The research results are beneficial to the design and optimization of the directly liquid cooled thin slab laser.
-
Keywords:
- directly liquid cooled thin slab laser /
- temperature distribution /
- thermal stress distribution /
- OPDm T
[1] Huai X L, Li Z G 2008 Appl. Phys. Lett. 92 041121
[2] Mu J, Feng G Y, Yang H M, Tang C, Zhou S H 2013 Acta Phys. Sin. 62 124204 (in Chinese) [母健, 冯国英, 杨火木, 唐淳, 周寿桓 2013 62 124204]
[3] Ichiro S, Yoichi S, Sunao K, Voicu L, Takunori T, Akio I, Kunio Y 2002 Opt. Lett. 27 234
[4] He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 94217 (in Chinese) [. 何广源, 郭靖, 焦中兴, 王彪 2012 61 94217]
[5] Foster, J D, Osterink L M 1970 J. Appl. Phys. 41 3656
[6] Osterink L M, Foster J D 1968 Appl. Phys. Lett. 12 128
[7] Yang H M, Feng G Y, Zhou S H 2011 Opt. Laser. Technol. 43 1006
[8] Zhou S H 2005 Chin. J. Quantum. Elect. 22 497 (in Chinese)[周寿桓 2005 量子电子学报 22 497]
[9] Willian S M 1972 US Patent 36 33126 [1978-01-04]
[10] Perry M D, Banks P S, Zweiback J, Schleicher R W 2008 US Patent 01 61365 [2003-08-28]
[11] Mandl A, Klimek D E 2010 Conference on Lasers and Electro-Optics San Jose, California United States, May 16-21, 2010
[12] Fu X, Liu Q, Li P, Gong M 2013 Appl. Phys. B 111 517
[13] Li P, Liu Q, Fu X, Gong M 2013 Chin. Opt. Lett. 11 041408
[14] Fu X, Li P, Liu Q, Gong M 2014 Opt. Express. 22 18421
[15] Li P, Fu X, Liu Q, Gong M 2015 Appl. Phys. B 119 371
[16] Fu X, Liu Q, Li P, Huang L, Gong M 2015 Opt. Express 23 18458
[17] Ye Z, Cai Z, Tu B, Wang X, Shang J, Yu Y, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 92550 T
[18] Ye Z, Cai Z, Tu B, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 967121
[19] Shah P K, London A L 1978 Laminar Flow Forced Convection in Ducts (London: Academic Press)
[20] Gnielinski V 1976 Int. Chem. Eng. 16 359
[21] Bruesselbach H, Sumida D S 2005 IEEE J. Sel. Top. Quant. 11 600
[22] Krupke W, Shinn M, Marion J, Caird J, Stokowski S 1986 JOSA B 3 102
[23] Chung T, Bass M 2007 Appl. Opt. 46 581
-
[1] Huai X L, Li Z G 2008 Appl. Phys. Lett. 92 041121
[2] Mu J, Feng G Y, Yang H M, Tang C, Zhou S H 2013 Acta Phys. Sin. 62 124204 (in Chinese) [母健, 冯国英, 杨火木, 唐淳, 周寿桓 2013 62 124204]
[3] Ichiro S, Yoichi S, Sunao K, Voicu L, Takunori T, Akio I, Kunio Y 2002 Opt. Lett. 27 234
[4] He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 94217 (in Chinese) [. 何广源, 郭靖, 焦中兴, 王彪 2012 61 94217]
[5] Foster, J D, Osterink L M 1970 J. Appl. Phys. 41 3656
[6] Osterink L M, Foster J D 1968 Appl. Phys. Lett. 12 128
[7] Yang H M, Feng G Y, Zhou S H 2011 Opt. Laser. Technol. 43 1006
[8] Zhou S H 2005 Chin. J. Quantum. Elect. 22 497 (in Chinese)[周寿桓 2005 量子电子学报 22 497]
[9] Willian S M 1972 US Patent 36 33126 [1978-01-04]
[10] Perry M D, Banks P S, Zweiback J, Schleicher R W 2008 US Patent 01 61365 [2003-08-28]
[11] Mandl A, Klimek D E 2010 Conference on Lasers and Electro-Optics San Jose, California United States, May 16-21, 2010
[12] Fu X, Liu Q, Li P, Gong M 2013 Appl. Phys. B 111 517
[13] Li P, Liu Q, Fu X, Gong M 2013 Chin. Opt. Lett. 11 041408
[14] Fu X, Li P, Liu Q, Gong M 2014 Opt. Express. 22 18421
[15] Li P, Fu X, Liu Q, Gong M 2015 Appl. Phys. B 119 371
[16] Fu X, Liu Q, Li P, Huang L, Gong M 2015 Opt. Express 23 18458
[17] Ye Z, Cai Z, Tu B, Wang X, Shang J, Yu Y, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 92550 T
[18] Ye Z, Cai Z, Tu B, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 967121
[19] Shah P K, London A L 1978 Laminar Flow Forced Convection in Ducts (London: Academic Press)
[20] Gnielinski V 1976 Int. Chem. Eng. 16 359
[21] Bruesselbach H, Sumida D S 2005 IEEE J. Sel. Top. Quant. 11 600
[22] Krupke W, Shinn M, Marion J, Caird J, Stokowski S 1986 JOSA B 3 102
[23] Chung T, Bass M 2007 Appl. Opt. 46 581
Catalog
Metrics
- Abstract views: 6448
- PDF Downloads: 194
- Cited By: 0