-
Effects of double heterostructure materials (AlGaN/GaN/AlGaN/GaN) with different GaN channel thickness values (14 nm, 28 nm, 60 nm) on the high electron mobility transistor (HEMT) are simulated by using silvaco, and furthermore, the differences in characteristic among the enhancement mode devices made from such double heterostructure materials with different F injection doses (150 W, 135 W) are also simulated. The simulation results show that the threshold voltage shifts towards positive direction and the saturation current decreases as the GaN channel thickness decreases. The two-dimensional electron gas (2 DEG) density could be reduced as GaN channel thickness decreases due to piezoelectric polarization weakened by backing AlGaN barrier. Combining F plasma treatment and double heterostructure material, the enhancement mode device with high positive threshold voltage is successfully developed. The DC characteristics of the enhancement mode devices with different GaN channel thickness values are analyzed comparatively, and the simulation results are validated by using the experimental results. The threshold voltages of these enhancement mode devices with GaN channel thickness values of 14 nm, 28 nm, and 60 nm reach 1.1 V, 0.8 V, and 0.3 V, respectively. The maximum transconductance values of these enhancement mode devices with GaN channel thickness values of 14 nm, 28 nm, and 60 nm reach 115 mS/mm, 137 mS/mm, and 198 mS/mm, respectively. The thinner GaN channel thickness in the double heterostructure could reduce the depth of quantum well and 2 DEG density, so that the device with a GaN channel thickness of 14 cm has a lower saturation current. The breakdown voltages and gate reverse leakage currents of the three kinds of devices are investigated, and the device with a thinner GaN channel has a lower leakage current and higher breakdown voltage due to weakened vertical electrical field in thinner channel double heterostructure. The damage of channel mobility in F plasma treatment is weakened by using a lower plasma power (135 W), and the enhancement mode device without annealing process demonstrates a better saturation current and transconductance characteristic. The results of the device with annealing confirm that the plasma damage is depressed at an F injection power of 135 W. The threshold voltage temperature stability of 14 nm GaN channel thickness device is studied, and Vth is only 0.4 V after 350 ℃ 2 min annealing process. Drain induced barrier lowering (DIBL) effects of the HEMTs with double heterostructures are investigated, and the DIBL value of the14 nm GaN channel device is 16 mV/V. The DIBL value indicates a good limiting property of the 2 DEG in double heterostructure device.
-
Keywords:
- double heterostructure /
- enhancement mode device /
- F plasma /
- drain induced barrier lowering effect
[1] Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201
[2] Zhang X Y, Tan R B, Sun J D, Li X X, Zhou Y, L L, Qin H 2015 Chin. Phys. B 24 105201
[3] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C, Hao Y 2015 Chin. Phys. B 24 017303
[4] Wang W K, Li Y J, Lin C K, Chan Y J, Chen G T, Chyi J I 2004 IEEE Trans. Electron Dev. 25 52
[5] Cai Y, Zhou Y G, Lau K M, Chen K J 2006 IEEE Trans. Electron Dev. 53 2207
[6] Tohru, Tomohiro N 2008 IEEE Trans. Electron Dev. 29 668
[7] Zanandrea A, Bahat-Treidel E, Rampazzo F, Stocco A, Meneghini M, Zanoni E, Hilt O, Ivo P, Wuerfl J, Meneghesso G 2012 Microelectron. Reliab. 52 2426
[8] Park P S, Siddharth R 2011 IEEE Trans. Electron. Dev. 58 704
[9] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE Trans. Electron Dev. 53 356
[10] 10 Zervos M, Kostopoulos A, Constantinidis G, Kayambaki M, Georgakilas A 2002 J. Appl. Phys. 91 4387
[11] Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Zhang H X, Liu X Y 2014 IEEE Trans. Electron Dev. 61 1341
[12] Martin-Horcajo S, Tadjer M J, Romero M F, Cuerdo R, Calle F 2011 Proceedings of the 8th Spanish Conference on Electron Devices Palma de Mallorca, Illes Balears, Feb. 8-11, 2011
[13] Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104
[14] Miller E J, Dang X Z, Yu E T 2000 J. Appl. Phys. 88 5952
-
[1] Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201
[2] Zhang X Y, Tan R B, Sun J D, Li X X, Zhou Y, L L, Qin H 2015 Chin. Phys. B 24 105201
[3] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C, Hao Y 2015 Chin. Phys. B 24 017303
[4] Wang W K, Li Y J, Lin C K, Chan Y J, Chen G T, Chyi J I 2004 IEEE Trans. Electron Dev. 25 52
[5] Cai Y, Zhou Y G, Lau K M, Chen K J 2006 IEEE Trans. Electron Dev. 53 2207
[6] Tohru, Tomohiro N 2008 IEEE Trans. Electron Dev. 29 668
[7] Zanandrea A, Bahat-Treidel E, Rampazzo F, Stocco A, Meneghini M, Zanoni E, Hilt O, Ivo P, Wuerfl J, Meneghesso G 2012 Microelectron. Reliab. 52 2426
[8] Park P S, Siddharth R 2011 IEEE Trans. Electron. Dev. 58 704
[9] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE Trans. Electron Dev. 53 356
[10] 10 Zervos M, Kostopoulos A, Constantinidis G, Kayambaki M, Georgakilas A 2002 J. Appl. Phys. 91 4387
[11] Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Zhang H X, Liu X Y 2014 IEEE Trans. Electron Dev. 61 1341
[12] Martin-Horcajo S, Tadjer M J, Romero M F, Cuerdo R, Calle F 2011 Proceedings of the 8th Spanish Conference on Electron Devices Palma de Mallorca, Illes Balears, Feb. 8-11, 2011
[13] Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104
[14] Miller E J, Dang X Z, Yu E T 2000 J. Appl. Phys. 88 5952
Catalog
Metrics
- Abstract views: 6776
- PDF Downloads: 259
- Cited By: 0