Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semiconductor Materials Genome Initiative: silicon-based light emission material

Luo Jun-Wei Li Shu-Shen

Citation:

Semiconductor Materials Genome Initiative: silicon-based light emission material

Luo Jun-Wei, Li Shu-Shen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The purpose of the semiconductor Materials Genome Initiative is to discover, develop, and deploy new materials in such a way that the research and development period is reduced to a half of original period, and the cost to a fraction of the present cost, thereby speeding up the advance of clean energy sourse, state security, and human welfare, through the organic integration of experiment, computation and theory. Semiconductors play a key role in developing technologies and industries relating to economy, state security, and human welfare. The implement of the semiconductor materials genome initiative will promote the development of semiconductor science and technology into a new era. In this paper, we present a demo of the semiconductor material genome project through introducing our early work on designing silicon-based light emission materials. We first briefly review the status of development of silicon-compatible light emission and challenges facing it. We then demonstrate the power and value of semiconductor materials genome initiative by presenting our recent work on the inverse design of strongly dipole-allowed direct bandgap two-dimensional Si/Ge superlattices and one-dimensional Si/Ge core/multi-shell nanowires, respectively, from two indirect-gap materials (Si and Ge). We use a combination of genetic algorithms with an atomistic pseudopotential Hamiltonian to search through the astronomic number of variants of Sin/Gem//Sip/Geq stacking sequences. We finally give a short perspective of semiconductor materials genome initiative.
    • Funds: Project supported by the Collaborative Innovation Center of the Quantum Information and Quantum Technology Frontier (2011 Project), the National Young 1000 Talents Plan, and the National Natural Science Foundation of China (Grant No. 61474116).
    [1]

    USA National Science and Technology Council 2011 Materials Genome Initiative for Global Competitiveness https://www.whitehouse.gov/mgi [2011-6]

    [2]

    USA National Science and Technology Council 2014 Materials Genome Initiative Strategic Plan https://www.whitehouse.gov/mgi [2014-1-1]

    [3]

    Wang S Q, Ye H Q 2013 Chin. Sci. Bull. 58 3623 (in Chinese) [王绍青, 叶恒强 2013 科学通报 58 3623]

    [4]

    Zhang L, Luo J, Andre S 2013 Nat. Commun. 4 2396

    [5]

    d'Avezac M, Luo J W, Thomas C, et al. 2012 Phys. Rev. Lett. 108 027401

    [6]

    Zhang L, d'Avezac M, Luo J W, et al. 2012 Nano Lett. 12 984

    [7]

    Tsybeskov B L, Lockwood D J 2009 Pro. IEEE 97 1161

    [8]

    Reed G T, Mashanovich G, Gardes F Y, et al. 2010 Nat. Photon. 4 518

    [9]

    Tsybeskov L, Lockwood D J 2009 Proc. IEEE 97 1284

    [10]

    Liang D, Bowers J E 2010 Nat. Photon. 4 511

    [11]

    Tanabe K, Watanabe K, Arakawa Y 2012 Sci. Rep. 2 349

    [12]

    Mi Z, Yang J, Bhattacharya P, et al. 2009 Proc. IEEE 97 1239

    [13]

    Vinh N Q, Ha N N, Gregorkiewicz T 2009 Proc. IEEE 97 1269

    [14]

    Priolo F, Gregorkiewicz T, Galli M, et al. 2014 Nat. Nanotechnol. 9 19

    [15]

    Menczigar U, Abstreiter G, Olajos J, et al. 1993 Phys. Rev. B 47 4099

    [16]

    Schmid U, Lukes F, hristensen N, et al. 1990 Phys. Rev. Lett. 65 1933

    [17]

    Zachai R, Eberl K, Abstreiter G, et al. 1990 Phys. Rev. Lett. 64 1055

    [18]

    Weber J, Alonso M I 1989 Phys. Rev. B 40 5683

    [19]

    Froyen S, Wood D M, Zunger A 1987 Phys. Rev. B 36 4547

    [20]

    Gnutzmann U, Clausecker K 1974 Appl. Phys. 3 9

    [21]

    Zhao X, Wei C M, Yang L, et al. 2004 Phys. Rev. Lett. 92 236805

    [22]

    Li D X, Feng J Y 2008 Appl. Phys. Lett. 92 243117

    [23]

    Wang L W, Zunger A 1999 Phys. Rev. B 59 15806

    [24]

    Luo J W, Chanti A N, van Schilfgaarde M, et al. 2010 Phys. Rev. Lett. 104 066405

    [25]

    Wang L W, Bellaiche L, Wei S H, et al. 1998 Phys. Rev. Lett. 80 4725

    [26]

    Hybertsen M S 1994 Phys. Rev. Lett. 72 1514

    [27]

    Gudiksen M S, Lauhon L J, Wang J, et al. 2002 Nature 415 617

    [28]

    Yan R, Gargas D, Yang P 2009 Nat. Photonics 3 569

    [29]

    Curtarolo S, Hart Gus L W, Nardelli M B, et al. 2013 Nat. Mater. 12 191

    [30]

    Greeley J, Jaramillo T F, Bonde J, et al. 2006 Nat. Mater. 5 909

    [31]

    Hautier G, Miglio A, Ceder G, et al. 2013 Nat. Commun. 4 2292

    [32]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701

    [33]

    Castelli I E, Olsen T, Datta S, et al. 2012 Energy Environmental Sci. 5 5814

    [34]

    McDowell D L, Tinkle S 2013 Nature 53 463

  • [1]

    USA National Science and Technology Council 2011 Materials Genome Initiative for Global Competitiveness https://www.whitehouse.gov/mgi [2011-6]

    [2]

    USA National Science and Technology Council 2014 Materials Genome Initiative Strategic Plan https://www.whitehouse.gov/mgi [2014-1-1]

    [3]

    Wang S Q, Ye H Q 2013 Chin. Sci. Bull. 58 3623 (in Chinese) [王绍青, 叶恒强 2013 科学通报 58 3623]

    [4]

    Zhang L, Luo J, Andre S 2013 Nat. Commun. 4 2396

    [5]

    d'Avezac M, Luo J W, Thomas C, et al. 2012 Phys. Rev. Lett. 108 027401

    [6]

    Zhang L, d'Avezac M, Luo J W, et al. 2012 Nano Lett. 12 984

    [7]

    Tsybeskov B L, Lockwood D J 2009 Pro. IEEE 97 1161

    [8]

    Reed G T, Mashanovich G, Gardes F Y, et al. 2010 Nat. Photon. 4 518

    [9]

    Tsybeskov L, Lockwood D J 2009 Proc. IEEE 97 1284

    [10]

    Liang D, Bowers J E 2010 Nat. Photon. 4 511

    [11]

    Tanabe K, Watanabe K, Arakawa Y 2012 Sci. Rep. 2 349

    [12]

    Mi Z, Yang J, Bhattacharya P, et al. 2009 Proc. IEEE 97 1239

    [13]

    Vinh N Q, Ha N N, Gregorkiewicz T 2009 Proc. IEEE 97 1269

    [14]

    Priolo F, Gregorkiewicz T, Galli M, et al. 2014 Nat. Nanotechnol. 9 19

    [15]

    Menczigar U, Abstreiter G, Olajos J, et al. 1993 Phys. Rev. B 47 4099

    [16]

    Schmid U, Lukes F, hristensen N, et al. 1990 Phys. Rev. Lett. 65 1933

    [17]

    Zachai R, Eberl K, Abstreiter G, et al. 1990 Phys. Rev. Lett. 64 1055

    [18]

    Weber J, Alonso M I 1989 Phys. Rev. B 40 5683

    [19]

    Froyen S, Wood D M, Zunger A 1987 Phys. Rev. B 36 4547

    [20]

    Gnutzmann U, Clausecker K 1974 Appl. Phys. 3 9

    [21]

    Zhao X, Wei C M, Yang L, et al. 2004 Phys. Rev. Lett. 92 236805

    [22]

    Li D X, Feng J Y 2008 Appl. Phys. Lett. 92 243117

    [23]

    Wang L W, Zunger A 1999 Phys. Rev. B 59 15806

    [24]

    Luo J W, Chanti A N, van Schilfgaarde M, et al. 2010 Phys. Rev. Lett. 104 066405

    [25]

    Wang L W, Bellaiche L, Wei S H, et al. 1998 Phys. Rev. Lett. 80 4725

    [26]

    Hybertsen M S 1994 Phys. Rev. Lett. 72 1514

    [27]

    Gudiksen M S, Lauhon L J, Wang J, et al. 2002 Nature 415 617

    [28]

    Yan R, Gargas D, Yang P 2009 Nat. Photonics 3 569

    [29]

    Curtarolo S, Hart Gus L W, Nardelli M B, et al. 2013 Nat. Mater. 12 191

    [30]

    Greeley J, Jaramillo T F, Bonde J, et al. 2006 Nat. Mater. 5 909

    [31]

    Hautier G, Miglio A, Ceder G, et al. 2013 Nat. Commun. 4 2292

    [32]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701

    [33]

    Castelli I E, Olsen T, Datta S, et al. 2012 Energy Environmental Sci. 5 5814

    [34]

    McDowell D L, Tinkle S 2013 Nature 53 463

  • [1] Cao Wen-Yu, Zhang Ya-Ting, Wei Yan-Feng, Zhu Li-Juan, Xu Ke, Yan Jia-Sheng, Zhou Shu-Xing, Hu Xiao-Dong. Strain modulation effect of superlattice interlayer on InGaN/GaN multiple quantum well. Acta Physica Sinica, 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [3] Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang. Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices. Acta Physica Sinica, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [4] Liu Ying-Guang, Xue Xin-Qiang, Zhang Jing-Wen, Ren Guo-Liang. Thermal conductivity of materials based on interfacial atomic mixing. Acta Physica Sinica, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [5] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [6] Liu Ying-Guang, Ren Guo-Liang, Hao Jiang-Shuai, Zhang Jing-Wen, Xue Xin-Qiang. Thermal conductivity of Si/Ge superlattices containing tilted interface. Acta Physica Sinica, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [7] Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen. Thermal conductivities of different period Si/Ge superlattices. Acta Physica Sinica, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [8] Li Zhu-Song, Steven Zhu. Continuum modeling of thermal transport in superlattices and layered materials for new energy matierlas. Acta Physica Sinica, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [9] Luo Xiao-Hua, He Wei, Wu Mu-Ying, Luo Shi-Yu. Quasi-periodic excitation and dynamic stability for strained superlattice. Acta Physica Sinica, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [10] Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [11] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [12] Shang Jie, Zhang Hui, Cao Ming-Gang, Zhang Peng-Xiang. Influence of oxygen pressure on the lattice constants of Ba0.6Sr0.4TiO3 thin films and preparation of BaTiO3/Ba0.6Sr0.4TiO3 superlattices. Acta Physica Sinica, 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [13] Jiang Lei, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Lu Yao, Zhang Guo-Lian. Electronic structure and optical properties of Cr doped SnO2 superlattice. Acta Physica Sinica, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [14] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. Neutron diffraction study of aging process effect on phase structure of single crystal superalloy. Acta Physica Sinica, 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [15] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [16] Li Zhi-Hua, Wang Wen-Xin, Liu Lin-Sheng, Jiang Zhong-Wei, Gao Han-Chao, Zhou Jun-Ming. As-soak dependence of interface roughness of AlSb/InAs superlattice. Acta Physica Sinica, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [17] Chang Yan-Ling, Zhang Qi-Feng, Sun Hui, Wu Jin-Lei. Development and behavior study of a ZnO nanowire-based electroluminescence device with double insulating-layer structure. Acta Physica Sinica, 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [18] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [19] Gu Pei-Fu, Chen Hai-Xing, Qin Xiao-Yun, Liu Xu. Design of polarization band-pass filters based on the theory of thin-film photonic crystal superlattice. Acta Physica Sinica, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
    [20] Zhang Qi-Yi, Tian Qiang. . Acta Physica Sinica, 2002, 51(8): 1804-1807. doi: 10.7498/aps.51.1804
Metrics
  • Abstract views:  7394
  • PDF Downloads:  4703
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2015
  • Accepted Date:  12 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map