-
Perovskite superlattices have received enormous attention in recent years, for they possess several new phases of quantum matter. In particular, an unexpected exchange bias effect in (111)-oriented superlattices composed of ferromagnetic LaMnO3 and paramagnetic LaNiO3 is observed, which has aroused broad interest. In this work, three kinds of LaMnO3/LaNiO3 superlattices with (001), (110), and (111) out-of-plane orientation are fabricated by pulsed laser deposition, and also studied systemically. It is found that the superlattices are epitaxially grown on the SrTiO3 substrates without strain relaxation. The superlattices have a monolayer terraced structure with a surface roughness below 0.1 nm. Electrical transport measurements reveal a Mott conducting behavior with strong localization of electrons in the superlattices. All the superlattices with different orientations exhibit exchange bias phenomenon. The field cooling and zero field cooling curves indicate that there are two different magnetic components in the superlattice in a low temperature range. Further analysis of the values of exchange field reveals that the exchange bias field is related to the orientation and polarity of the superlattices. Different superlattices form different charged planes stacked along out-of-plane orientation, leading to a polarity match/mismatch at the interface between the superlattices and substrates. The surface reconstructions that act as compensating for the polar mismatch influence the exchange bias field of the superlattices. It is observed that the intensities of the exchange field of the polar-matched superlattices are higher than those of the polar-mismatched superlattices at different temperatures. These results are helpful in further understanding the magnetoelectric transport properties in the perovskite superlattices.
-
Keywords:
- perovskite /
- superlattice /
- epitaxial growth /
- exchange bias
[1] Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575
Google Scholar
[2] 姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805
Google Scholar
Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805
Google Scholar
[3] Pena M A, Fierro J L 2001 Chem. Rev. 101 1981
Google Scholar
[4] Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535
Google Scholar
[5] Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857
Google Scholar
[6] Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028
Google Scholar
[7] Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104
Google Scholar
[8] Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772
Google Scholar
[9] Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103
Google Scholar
[10] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 67 157505
Google Scholar
Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505
Google Scholar
[11] Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601
Google Scholar
[12] 张鹏, 朴红光, 张英德, 黄焦宏 2021 70 157501
Google Scholar
Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501
Google Scholar
[13] Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112
Google Scholar
[14] Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195
Google Scholar
[15] Dong S, Dagotto E 2013 Phys. Rev. B 87 195116
Google Scholar
[16] Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426
Google Scholar
[17] Lee A T, Han M J 2013 Phys. Rev. B 88 035126
Google Scholar
[18] Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403
Google Scholar
[19] Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557
Google Scholar
[20] Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602
Google Scholar
[21] Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132
Google Scholar
[22] Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422
Google Scholar
[23] Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527
Google Scholar
[24] Brenig W 1973 Philos. Mag. 27 1093
Google Scholar
[25] Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207
Google Scholar
[26] Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411
Google Scholar
[27] Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102
Google Scholar
[28] Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108
Google Scholar
[29] Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111
Google Scholar
[30] Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101
Google Scholar
[31] Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602
Google Scholar
-
-
[1] Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575
Google Scholar
[2] 姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805
Google Scholar
Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805
Google Scholar
[3] Pena M A, Fierro J L 2001 Chem. Rev. 101 1981
Google Scholar
[4] Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535
Google Scholar
[5] Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857
Google Scholar
[6] Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028
Google Scholar
[7] Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104
Google Scholar
[8] Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772
Google Scholar
[9] Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103
Google Scholar
[10] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 67 157505
Google Scholar
Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505
Google Scholar
[11] Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601
Google Scholar
[12] 张鹏, 朴红光, 张英德, 黄焦宏 2021 70 157501
Google Scholar
Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501
Google Scholar
[13] Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112
Google Scholar
[14] Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195
Google Scholar
[15] Dong S, Dagotto E 2013 Phys. Rev. B 87 195116
Google Scholar
[16] Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426
Google Scholar
[17] Lee A T, Han M J 2013 Phys. Rev. B 88 035126
Google Scholar
[18] Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403
Google Scholar
[19] Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557
Google Scholar
[20] Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602
Google Scholar
[21] Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132
Google Scholar
[22] Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422
Google Scholar
[23] Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527
Google Scholar
[24] Brenig W 1973 Philos. Mag. 27 1093
Google Scholar
[25] Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207
Google Scholar
[26] Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411
Google Scholar
[27] Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102
Google Scholar
[28] Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108
Google Scholar
[29] Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111
Google Scholar
[30] Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101
Google Scholar
[31] Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602
Google Scholar
Catalog
Metrics
- Abstract views: 4980
- PDF Downloads: 78
- Cited By: 0