-
Si-based optical interconnection is expected to solve the problems caused by electric interconnection with increasing the density of integrated circuits, due to its merits of high speed, high bandwidth, and low consumption. So far, all of the key components except light source of Si-based optical interconnection have been demonstrated. Therefore, the light source has been considered as one of the most important components. Ge and GeSn based on Si have emerged as very promising candidates because of their high compatibility with Si CMOS processing, and the pseudo direct-bandgap characteristic. The energy difference between the direct and indirect bandgap of Ge is only 136 meV at room temperature. Under tensile strain or incorporation with Sn, the energy difference becomes smaller, and even less than zero, which means that Ge or GeSn changes into direct bandgap material. What is more, using large n-type doping to increase the fraction of electrons in valley, we can further increase the luminous efficiency of Ge or GeSn. In this paper, we briefly overview the recent progress that has been reported in the study of Ge and GeSn light emitters for silicon photonics, including theoretical models for calculating the optical gain and loss, several common methods of introducing tensile strain into Ge, methods of increasing the n-type doping density, and the method of fabricating luminescent devices of Ge and GeSn. Finally, we discuss the challenges facing us and the development prospects, in order to have a further understanding of Ge and GeSn light sources. Several breakthroughs have been made in past years, especially in the realizing of lasing from GeSn by optically pumping and Ge by optically and electrically pumping, which makes it possible to fabricate a practical laser used in silicon photonics and CMOS technology.
-
Keywords:
- silicon photonics /
- Ge /
- GeSn /
- luminescent device
[1] Moore G E 1998 Proc. IEEE 86 82
[2] Smit M, van der Tol J, Hill M 2012 Laser Photon Rev. 6 1
[3] Paniccia M 2010 Nature Photon. 4 498
[4] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192
[5] Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M 2005 Nature 433 292
[6] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725
[7] Fujii M, Yoshida M, Kanzawa Y, Hayashi S, Yamamoto K 1997 Appl. Phys. Lett. 71 1198
[8] Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E 2006 Opt. Express 14 9203
[9] Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381
[10] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416
[11] Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L, Michel J 2007 Opt. Express 15 11272
[12] Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Ze Y, Saraswat K C 2012 IEEE Photon. J. 4 2002
[13] El Kurdi M, Fishman G, Sauvage S b, Boucaud P 2010 J. Appl. Phys. 107 013710
[14] Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103
[15] Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Dimoulas A 2012 J. Phys.: Condens. Matter 24 1614
[16] Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Physica B: Condens. Matter 427 62
[17] Liu L, Zhang M, Hu L, Di Z 2014 J. Appl. Phys. 116 113105
[18] Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J, Kimerling L C 2004 Phys. Rev. B 70 155309
[19] Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804
[20] Fang Y Y, Tolle J, Roucka R, Chizmeshya A V G, Kouvetakis J, D'Costa V R, Menéndez J 2007 Appl. Phys. Lett. 90 061915
[21] Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111
[22] Lim P H, Park S, Ishikawa Y, Wada K 2009 Opt. Express 17 16358
[23] Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PNAS 108 18893
[24] Jain J R, Hryciw A, Baer T M, Miller D A, Brongersma M L, Howe R T 2012 Nature Photon. 6 398
[25] Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, El Kurdi M, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399
[26] Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911
[27] El Kurdi M, Kociniewski T, Ngo T P, Boulmer J, Débarre D, Boucaud P, Damlencourt J F, Kermarrec O, Bensahel D 2009 Appl. Phys. Lett. 94 191107
[28] Pankove J I, Aigrain P 1962 Phys. Rev. 126 956
[29] Haas C 1962 Phys. Rev. 125 1965
[30] Spitzer W G, Trumbore F A, Logan R A 1961 J. Appl. Phys. 32 1822
[31] Newman R, Tyler W W 1957 Phys. Rev. 105 885
[32] Carroll L, Friedli P, Neuenschwander S, Sigg H, Cecchi S, Isa F, Chrastina D, Isella G, Fedoryshyn Y, Faist J 2012 Phys. Rev. Lett. 109 057402
[33] Sun X C, Liu J F, Kimerling L C, Michel J 2008 Sige, Ge, and Related Compounds 3 : Materials, Processing, and Devices 16 881
[34] Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508
[35] Camacho-Aguilera R E, Cai Y, Bessette J T, Kimerling L C, Michel J 2012 Opt. Mat. Express 2 1462
[36] Xu C, Senaratne C L, Kouvetakis J, Menéndez J 2014 Appl. Phys. Lett. 105 232103
[37] Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102
[38] Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019
[39] Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198
[40] Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679
[41] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316
[42] Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815
[43] Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A, Checoury X 2013 Nat. Photon. 7 162
[44] Jenkins D W, Dow J D 1987 Phys. Rev. B 36 7994
[45] D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J, Menéndez J 2006 Phys. Rev. B 73 125207
[46] Yin W J, Gong X G, Wei S H 2008 Phys. Rev. B: Condens. Matter 78 161203
[47] Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J 2010 Appl. Phys. Lett. 97 221912
[48] Grzybowski G, Jiang L, Mathews J, Roucka R, Xu C, Beeler R T, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 99 171910
[49] Roucka R, Mathews J, Beeler R T, Tolle J, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 98 061109
[50] Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125
[51] Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J 2011 IEEE Photon. Tech. L. 23 1751
[52] Oehme M, Kostecki K, Arguirov T, Mussler G, Kaiheng Y, Gollhofer M, Schmid M, Kaschel M, Korner R A, Kittler M, Buca D, Kasper E, Schulze J 2014 IEEE Photon. Tech. L. 26 187
[53] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nature Photon. 9 88
-
[1] Moore G E 1998 Proc. IEEE 86 82
[2] Smit M, van der Tol J, Hill M 2012 Laser Photon Rev. 6 1
[3] Paniccia M 2010 Nature Photon. 4 498
[4] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192
[5] Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M 2005 Nature 433 292
[6] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725
[7] Fujii M, Yoshida M, Kanzawa Y, Hayashi S, Yamamoto K 1997 Appl. Phys. Lett. 71 1198
[8] Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E 2006 Opt. Express 14 9203
[9] Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381
[10] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416
[11] Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L, Michel J 2007 Opt. Express 15 11272
[12] Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Ze Y, Saraswat K C 2012 IEEE Photon. J. 4 2002
[13] El Kurdi M, Fishman G, Sauvage S b, Boucaud P 2010 J. Appl. Phys. 107 013710
[14] Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103
[15] Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Dimoulas A 2012 J. Phys.: Condens. Matter 24 1614
[16] Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Physica B: Condens. Matter 427 62
[17] Liu L, Zhang M, Hu L, Di Z 2014 J. Appl. Phys. 116 113105
[18] Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J, Kimerling L C 2004 Phys. Rev. B 70 155309
[19] Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804
[20] Fang Y Y, Tolle J, Roucka R, Chizmeshya A V G, Kouvetakis J, D'Costa V R, Menéndez J 2007 Appl. Phys. Lett. 90 061915
[21] Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111
[22] Lim P H, Park S, Ishikawa Y, Wada K 2009 Opt. Express 17 16358
[23] Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PNAS 108 18893
[24] Jain J R, Hryciw A, Baer T M, Miller D A, Brongersma M L, Howe R T 2012 Nature Photon. 6 398
[25] Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, El Kurdi M, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399
[26] Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911
[27] El Kurdi M, Kociniewski T, Ngo T P, Boulmer J, Débarre D, Boucaud P, Damlencourt J F, Kermarrec O, Bensahel D 2009 Appl. Phys. Lett. 94 191107
[28] Pankove J I, Aigrain P 1962 Phys. Rev. 126 956
[29] Haas C 1962 Phys. Rev. 125 1965
[30] Spitzer W G, Trumbore F A, Logan R A 1961 J. Appl. Phys. 32 1822
[31] Newman R, Tyler W W 1957 Phys. Rev. 105 885
[32] Carroll L, Friedli P, Neuenschwander S, Sigg H, Cecchi S, Isa F, Chrastina D, Isella G, Fedoryshyn Y, Faist J 2012 Phys. Rev. Lett. 109 057402
[33] Sun X C, Liu J F, Kimerling L C, Michel J 2008 Sige, Ge, and Related Compounds 3 : Materials, Processing, and Devices 16 881
[34] Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508
[35] Camacho-Aguilera R E, Cai Y, Bessette J T, Kimerling L C, Michel J 2012 Opt. Mat. Express 2 1462
[36] Xu C, Senaratne C L, Kouvetakis J, Menéndez J 2014 Appl. Phys. Lett. 105 232103
[37] Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102
[38] Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019
[39] Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198
[40] Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679
[41] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316
[42] Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815
[43] Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A, Checoury X 2013 Nat. Photon. 7 162
[44] Jenkins D W, Dow J D 1987 Phys. Rev. B 36 7994
[45] D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J, Menéndez J 2006 Phys. Rev. B 73 125207
[46] Yin W J, Gong X G, Wei S H 2008 Phys. Rev. B: Condens. Matter 78 161203
[47] Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J 2010 Appl. Phys. Lett. 97 221912
[48] Grzybowski G, Jiang L, Mathews J, Roucka R, Xu C, Beeler R T, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 99 171910
[49] Roucka R, Mathews J, Beeler R T, Tolle J, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 98 061109
[50] Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125
[51] Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J 2011 IEEE Photon. Tech. L. 23 1751
[52] Oehme M, Kostecki K, Arguirov T, Mussler G, Kaiheng Y, Gollhofer M, Schmid M, Kaschel M, Korner R A, Kittler M, Buca D, Kasper E, Schulze J 2014 IEEE Photon. Tech. L. 26 187
[53] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nature Photon. 9 88
Catalog
Metrics
- Abstract views: 6016
- PDF Downloads: 478
- Cited By: 0