-
VO2 thin films have been studied for their semiconductor-metal reversible transition from the monoclinic to the rutile structure, where the electrical and optical properties undergo a drastic change by increasing the temperature or by applying a voltage. VO2 film is becoming a promising material for optical switch, optical storage, optical modulator, smart window, and micro-bolometer. The preparation procedures of the FTO/VO2/FTO structure in detail are as follows: First, the F-doped SnO2 conductive glass (FTO) substrates are cleaned sequentially in acetone, ethanol, and deionized water for 10 min using an ultrasonic cleaning equipment at a frequency of 20 kHz. When the FTO substrates was cleaned, they are dried with nitrogen. Second, the dried FTO substrates are placed in the chamber of a DC magnetron sputtering system equipped with a high-purity metal target of V (99.9%). After argon (99.999%) of 80 sccm flux was discharged with the current of 2 A and the voltage of 400 V for 2 min, the vanadium films are deposited on the FTO substrates. Third, the prepared vanadium films are annealed for different annealing time in an atmosphere composed of different proportions of nitrogen-oxygen. Then another layer thickness of 350 nm of FTO conductive film is deposited on the VO2 thin film by using the plasma enhanced chemical vapor deposition method. Finally, different sizes of the FTO/VO2/FTO structure are prepared by using photolithography and chemical etching processes. The effect of different annealing time and different proportions of nitrogen-oxygen atmosphere on the VO2 thin films has been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer are then used to test and analyze the crystal structure, surface morphology, surface roughness, the relative content of the surface elements, and transmittance of the VO2/FTO composite films. Results show that a relatively single component VO2 thin film can be obtained under the optimum condition. The current abrupt change can be seen at the threshold voltage when the FTO/VO2/FTO structure is applied to voltage on both the transparent conductive films of the VO2 thin film. The threshold voltage is 1.7 V when the contact area is 3 mm×mm, and the threshold voltage increases as the contact area increases. When the contact area is 6 mm × 6 mm, the threshold voltage of the thin film phase transition is 4.3 V; when the contact area is 8 mm × 8 mm, the threshold voltage of the thin film phase transition is 9.3 V. Compared with the no voltage situation, the infrared transmittance difference of the FTO/VO2/FTO structure under the effect of voltage is up to 28% before and after the transition. The structure remains stable with a strong electrochromic capacity when it is applied with voltage repeatedly. This brings about many new opportunities for optoelectronic devices and industrial production.
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837
[3] Lee Y W, Kim B J, Lim J W, Jin Y S 2008 Appl. Phys. Lett. 92 162903
[4] Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501
[5] Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503
[6] Lee K W, Kweon J J, Lee C E, Gedanken A, Ganesan R 2010 Appl. Phys. Lett. 96 243111
[7] Sugimoto N, Onoda S, Nagaosa N 2008 Phys. Rev. B 78 155104
[8] Brassard D, Fourmaux S, Jacques M J, Kieffer J C, Khahani M A 2005 Appl. Phys. Lett. 87 051910
[9] Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702
[10] Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106
[11] He S B, Wang S F, Ding Q P, Yuan X D, Zheng W G, Xiang X, Li Z J, Zu X T 2013 Chin. Phys. B 22 058102
[12] Hu Z Q, Zhang C N, Qiu P, Liu L H, Okuya M, Kaneko S 2005 J. Funct. Mater. 36 1886 (in Chinese) [胡志强, 张晨宁, 邱鹏, 刘俐宏, 奥谷昌之, 金子正治 2005 功能材料 36 1886]
[13] Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102(in Chinese) [佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]
[14] Shen N, Li Y, Yi X J 2006 J. Infra. Milli. Waves 25 199 (in Chinese) [沈楠, 李毅, 易新建 2006 红外与毫米波学报 25 199]
[15] Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics· Laser 22 656 (in Chinese) [张楷亮, 韦晓莹, 王芳, 武长强, 赵金石 2011 光电子 · 激光 22 656]
[16] Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102(in Chinese) [熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]
[17] Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443
[18] Zhou Y, Chen X N, Ko C, Yang Z, Mouli C, Ramanthan S 2013 IEEE Electr Device L 34 202
[19] Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52
[20] Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507
[21] Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480(in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]
[22] Continenza A, Massidda S, Posternak M 1999 Phys. Rev.B 60 15699
-
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837
[3] Lee Y W, Kim B J, Lim J W, Jin Y S 2008 Appl. Phys. Lett. 92 162903
[4] Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501
[5] Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503
[6] Lee K W, Kweon J J, Lee C E, Gedanken A, Ganesan R 2010 Appl. Phys. Lett. 96 243111
[7] Sugimoto N, Onoda S, Nagaosa N 2008 Phys. Rev. B 78 155104
[8] Brassard D, Fourmaux S, Jacques M J, Kieffer J C, Khahani M A 2005 Appl. Phys. Lett. 87 051910
[9] Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702
[10] Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106
[11] He S B, Wang S F, Ding Q P, Yuan X D, Zheng W G, Xiang X, Li Z J, Zu X T 2013 Chin. Phys. B 22 058102
[12] Hu Z Q, Zhang C N, Qiu P, Liu L H, Okuya M, Kaneko S 2005 J. Funct. Mater. 36 1886 (in Chinese) [胡志强, 张晨宁, 邱鹏, 刘俐宏, 奥谷昌之, 金子正治 2005 功能材料 36 1886]
[13] Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102(in Chinese) [佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]
[14] Shen N, Li Y, Yi X J 2006 J. Infra. Milli. Waves 25 199 (in Chinese) [沈楠, 李毅, 易新建 2006 红外与毫米波学报 25 199]
[15] Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics· Laser 22 656 (in Chinese) [张楷亮, 韦晓莹, 王芳, 武长强, 赵金石 2011 光电子 · 激光 22 656]
[16] Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102(in Chinese) [熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]
[17] Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443
[18] Zhou Y, Chen X N, Ko C, Yang Z, Mouli C, Ramanthan S 2013 IEEE Electr Device L 34 202
[19] Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52
[20] Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507
[21] Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480(in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]
[22] Continenza A, Massidda S, Posternak M 1999 Phys. Rev.B 60 15699
Catalog
Metrics
- Abstract views: 6234
- PDF Downloads: 252
- Cited By: 0