-
采用直流磁控溅射与后退火工艺相结合的方法,在掺氟SnO2(FTO)导电玻璃基底上制备了高质量的掺钨VO2薄膜,对薄膜的结构、表面形貌和光电特性进行测试,分析了钨掺杂对其相变性能的影响.结果表明,室温下掺钨VO2薄膜的阈值电压为4.2 V,观察到阈值电压下约有两个数量级的电流突变.随着温度升高,相变的阈值电压降低,且电流突变幅度减小.当施加8 V电压时,分别在不同温度下测试了掺钨VO2薄膜的透过率.温度为20和50℃时,掺钨VO2薄膜相变前后的红外透过率差量分别为23%和27%.与未掺杂的VO2薄膜相比,掺钨VO2薄膜具有相变温度低、阈值电压低和电阻率小的特点,在高速光电器件中有广阔的应用前景.The phase transition characteristics of tungsten-doped vanadium dioxide film driven by an applied voltage are studied in the paper.A high-quality film is successfully deposited on an FTO (F:SnO2) transparent conductive glass substrate by direct current magnetron sputtering and post-anneal processing.First of all,an FTO substrate is placed in the chamber of magnetron sputtering system after being cleaned and dried.Then W-doped vanadium film is fabricated on the substrate with V-W alloy target with 1.4% W by mass fraction.In the process of magnetron sputtering,the operating pressure is kept at 3.0×10-1 Pa,and the operating voltage and current are 400 V and 2 A,respectively.Finally,W-doped VO2 film with a thickness of about 310 nm is prepared by being annealed at 400℃ in air atmosphere for 2.5 h.In order to explore the crystal structure,element constituents,surface morphology,roughness and photoelectric properties of W-doped vanadium dioxide film,it is respectively characterized by X-ray photoelectron spectroscopy (XPS),X-ray diffraction (XRD),scanning electron microscope (SEM),atomic force microscope (AFM) and semiconductor parameter analyzer.The XPS analysis confirms that there are no other elements except vanadium,oxygen,carbon and tungsten on the surface of W-doped VO2 film.The XRD patterns illustrate that tungsten-doping exerts an influence on the crystal lattice of VO2,but the film still prefers the orientation (110).The SEM and AFM images display that the film with low roughness has a compact structure and irregular crystal particles.Tungsten-doping is found to be able to improve the surface morphology of VO2 thin film significantly.In addition,a remarkable change in electrical resistivity and a narrow thermal hysteresis loop are also obtained in the metal-semiconductor phase transition.Further,the influences of tungsten-doping on the phase transition properties of the film are analyzed.The experiment demonstrates that the threshold voltage at which the phase transition of W-doped VO2 film occurs is 4.2 V at room temperature when the film is driven by an applied voltage ranging from 0 V to 8 V.It can be observed clearly that the current changes abruptly by two orders of magnitude.As the ambient temperature rises,the threshold voltage of phase transition drops and the current varies slightly.The optical transmittance curves show the distinct differences under applied voltage at different temperatures.It is found that the infrared transmittance difference reaches up to a maximal value of 27% at 50℃ during phase transition,while it increases by only 23% at 20℃ in a wavelength range of 1100-1500 nm.All these outstanding features indicate that W-doped VO2 film has excellent properties of electrically-induced phase transition. Compared with undoped-VO2 film,the W-doped VO2 film is predicated to have a wide range of applications in the high-speed optoelectronic devices due to its advantages of lower phase transition temperature,resistivity and threshold voltage
-
Keywords:
- tungsten-doped VO2 film /
- electrically-induced phase transition /
- threshold voltage /
- optical transmittance
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102 (in Chinese)[佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]
[3] Tazawa M, Jin P, Tanemura S 1998 Appl. Opt. 37 1858
[4] Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744
[5] Lawton S A, Theby E A 1995 J. Am. Ceram. Soc. 78 238
[6] Mao Z P, Wang W, Liu Y, Zhang L P, Xu H, Zhong Y 2014 Thin Solid Films 558 208
[7] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
[8] Paone A, Sanjines R, Jeanneret P, Whitlow H J, Guibert E, Guibert G, Bussy F, Scartezzini J, Scheler A 2015 J. Alloys. Compd. 621 206
[9] Takami H, Kanki T, Ueda S, Kobayashi K, Tanaka H 2012 Phys. Rev. B 85 205111
[10] Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339
[11] Chen Z, Wen Q Y, Dong K, Sun D D, Qiu D H, Zhang H W 2013 Chin. Phys. Lett. 30 017102
[12] Okuyama D, Shibuya K, Kumai R, Suzuki T, Yamasaki Y, Nakao H, Murakami Y, Kawasaki M, Taguchi Y, Tokura Y, Arima T 2015 Phys. Rev. B 91 064101
[13] Xiao Y, Zhai Z H, Shi Q W, Zhu L G, Li J, Huang W X 2015 Appl. Phys. Lett. 107 031906
[14] Hao R L, Li Y, Liu F, Sun Y, Tang J Y, Chen P Z, Jiang W, Wu Z Y, Xu T T, Fang B Y, Wang X H, Xiao H 2015 Acta Phys. Sin. 64 198101 (in Chinese)[郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒 2015 64 198101]
[15] Xiong Y, Wen Q Y, Tian W, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese)[熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]
[16] Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 62 217201]
[17] Zhou Y, Chen X N, Ko C H, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electr. Dev. Lett. 34 220
[18] Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878
[19] Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J, Laou P, Paradis S 2008 J. Vac. Sci. Technol. A 26 763
[20] Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J 2007 J. Vac. Sci. Technol. A 25 971
[21] Bhattacharyya S R, Majumder S 2012 Adv. Sci. Lett. 5 268
[22] Acosta D R, Estrada W, Castanedo R, Maldonado A, Valenzuela M A 2000 Thin Solid Films 375 147
[23] Rajeswaran B, Umarji A M 2016 AIP. Adv. 6 035215
[24] Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J (in Chinese)[颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]
[25] Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699
-
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102 (in Chinese)[佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]
[3] Tazawa M, Jin P, Tanemura S 1998 Appl. Opt. 37 1858
[4] Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744
[5] Lawton S A, Theby E A 1995 J. Am. Ceram. Soc. 78 238
[6] Mao Z P, Wang W, Liu Y, Zhang L P, Xu H, Zhong Y 2014 Thin Solid Films 558 208
[7] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
[8] Paone A, Sanjines R, Jeanneret P, Whitlow H J, Guibert E, Guibert G, Bussy F, Scartezzini J, Scheler A 2015 J. Alloys. Compd. 621 206
[9] Takami H, Kanki T, Ueda S, Kobayashi K, Tanaka H 2012 Phys. Rev. B 85 205111
[10] Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339
[11] Chen Z, Wen Q Y, Dong K, Sun D D, Qiu D H, Zhang H W 2013 Chin. Phys. Lett. 30 017102
[12] Okuyama D, Shibuya K, Kumai R, Suzuki T, Yamasaki Y, Nakao H, Murakami Y, Kawasaki M, Taguchi Y, Tokura Y, Arima T 2015 Phys. Rev. B 91 064101
[13] Xiao Y, Zhai Z H, Shi Q W, Zhu L G, Li J, Huang W X 2015 Appl. Phys. Lett. 107 031906
[14] Hao R L, Li Y, Liu F, Sun Y, Tang J Y, Chen P Z, Jiang W, Wu Z Y, Xu T T, Fang B Y, Wang X H, Xiao H 2015 Acta Phys. Sin. 64 198101 (in Chinese)[郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒 2015 64 198101]
[15] Xiong Y, Wen Q Y, Tian W, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese)[熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]
[16] Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 62 217201]
[17] Zhou Y, Chen X N, Ko C H, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electr. Dev. Lett. 34 220
[18] Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878
[19] Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J, Laou P, Paradis S 2008 J. Vac. Sci. Technol. A 26 763
[20] Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J 2007 J. Vac. Sci. Technol. A 25 971
[21] Bhattacharyya S R, Majumder S 2012 Adv. Sci. Lett. 5 268
[22] Acosta D R, Estrada W, Castanedo R, Maldonado A, Valenzuela M A 2000 Thin Solid Films 375 147
[23] Rajeswaran B, Umarji A M 2016 AIP. Adv. 6 035215
[24] Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J (in Chinese)[颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]
[25] Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699
计量
- 文章访问数: 7736
- PDF下载量: 312
- 被引次数: 0