搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究

罗雄 孟威威 陈国旭佳 管晓溪 贾双凤 郑赫 王建波

引用本文:
Citation:

二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究

罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波

First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials

Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo
PDF
HTML
导出引用
  • 基于第一性原理计算, 确定了3种稳定未被报道的Nb2SiTe4基化合物(A2BX4: Nb2SiSe4, Nb2SnTe4和Ta2GeTe4), 研究了其电子结构, 光学性质以及应力工程对其电子结构的调控. 计算结果表明上述3种化合物具有类似Nb2SiTe4的窄带隙值、强的光吸收性能以及显著的光学各向异性, 可用于光电器件之中. 其晶格常数范围为6.04 Å ≤ a ≤ 6.81 Å, 7.74 Å ≤ b ≤ 8.15 Å. Ta2GeTe4的晶格参数与Nb2SiTe4几乎相同, 带隙值减小了0.15 eV, 可应用于远红外光探测. 应力工程表明外加双轴拉伸应力可减小A2BX4体系带隙值. 外加双轴压缩应力时, A2BX4体系价带顶轨道可出现反转(Nb2SiTe4, Nb2GeTe4和Ta2GeTe4), 由B位阳离子占据态d轨道主导转变为B位阳离子占据态d轨道与X位阴离子满p轨道共同主导, 导致带隙值变化趋势异常. 我们预测该价带顶轨道的反转可有效降低空穴有效质量, 促进载流子的迁移, 有助于器件性能的提升.
    Two-dimensional (2D) niobium silicon telluride (Nb2SiTe4) was recently proposed as a promising candidate in infrared detector, photoelectric conversion, polarized optical sensor and ferroelastic switching application due to its narrow bandgap, long-term air stability, high carrier mobility, etc. However, the in-plane strains and interfacial defects induced by the lattice misfits between functional layers are harmful to 2D heterojunction nanodevice performance, making the crystal-lattice regulation and strain engineering necessary to achieve lattice matching and strain-controllable interface. Here, using first-principles calculations and elemental substitutions, i.e., replacing cations (anions) with elements in the same group of periodic table, we identify three new and stable single-layer A2BX4 analogues (Nb2SiSe4, Nb2SnTe4 and Ta2GeTe4) as appealing candidates in manipulating the lattice parameters of Nb2SiTe4. The controllable lattice parameters are 6.04 Å ≤ a ≤ 6.81 Å and 7.74 Å ≤ b ≤ 8.15 Å. Among them, Ta2GeTe4 exhibits similar lattice parameters to Nb2SiTe4 but smaller bandgap, yielding better response in far-infrared region. Strain engineering shows that the external biaxial tensile stress narrows the bandgaps of A2BX4 due to the downshifting in energy of conduction band minimum (CBM). External biaxial compressive stress induces valance band maximum (VBM) orbital inversion for Nb2SiTe4, Nb2GeTe4 and Ta2GeTe4, which pushes up VBM and discontinues the trend of corresponding bandgap increase. In this case, the bandgap change depends on the competition between energy upshifts of both CBM and VBM. In the Nb2SiSe4 and Nb2SnTe4 cases, the d-p antibonding coupling in valance band is so strong that no valance band inversion appears while the bandgap increases by ~0.3 eV under −5% compressive strain. Regarding Nb2SiTe4, Nb2GeTe4 and Ta2GeTe4, their bandgaps can hardly change under −5% compressive strain, indicating that the energy upshift in VBM equals that in CBM. Such a valance band inversion is attributed to Te outmost p orbital overlapping, which introduces more dispersive VBM and smaller effective mass of hole. Our findings suggest that Nb2SiTe4 can be alloyed with Nb2SiSe4, Nb2SnTe4 and Ta2GeTe4 to achieve controllable device lattice matching while maintaining its superior properties at the same time. The use of external biaxial compressive stress can promote the hole diffusion and improve the device performance.
      通信作者: 孟威威, meng@whu.edu.cn ; 郑赫, zhenghe@whu.edu.cn ; 王建波, wang@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51871169, 51671148, 11674251, 51501132, 51601132)、江苏省自然科学基金(批准号: BK20191187)、中央高校基本科研业务费专项资金(批准号: 2042019kf0190)、深圳市科创委基础研究面上项目(批准号: JCYJ20190808150407522)和中国博士后科学基金(批准号: 2019M652685)资助的课题
      Corresponding author: Meng Wei-Wei, meng@whu.edu.cn ; Zheng He, zhenghe@whu.edu.cn ; Wang Jian-Bo, wang@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51871169, 51671148, 11674251, 51501132, 51601132), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191187), the Fundamental Research Funds for the Central Universities, China (Grant No. 2042019kf0190), the Science and Technology Program of Shenzhen, China (Grant Nos. JCYJ20190808, 150407522), and the China Postdoctoral Science Foundation (Grant No. 2019M652685)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Fan Y, Liu X, Wang J, Ai H, Zhao M 2018 Phys. Chem. Chem. Phys. 20 11369Google Scholar

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [4]

    Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, Macdonald A H, Niu Q 2014 Phys. Rev. Lett. 112 116404Google Scholar

    [5]

    Ishii T, Sato T 1983 J. Cryst. Growth 61 689Google Scholar

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [7]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [8]

    Venkatasubramanian R, Colpitts T, Watko E, Lamvik M, El-Masry N 1997 J. Cryst. Growth 170 817Google Scholar

    [9]

    Zhao M, Xia W, Wang Y, Luo M, Tian Z, Guo Y, Hu W, Xue J 2019 ACS Nano 13 10705Google Scholar

    [10]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [11]

    Zhang T, Ma Y, Xu X, Lei C, Huang B, Dai Y 2020 J. Phys. Chem. Lett. 11 497Google Scholar

    [12]

    Jain S C, Harker A H, Cowley R A 1997 Philos. Mag. A 75 1461Google Scholar

    [13]

    Wosinski T, Yastrubchak O, Makosa A, Figielski T 2000 J. Phys. Condens. Matter 12 10153Google Scholar

    [14]

    Smith A M, Mohs A M, Nie S 2009 Nat. Nanotechnol. 4 56Google Scholar

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [18]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [19]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [20]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [21]

    Tremel W, Kleinke H, Derstroff V, Reisner C 1995 J. Alloys. Compd. 219 73Google Scholar

    [22]

    Gareh J, Boucher F, Evain M 1996 Eur. J. Solid State Inorg. Chem. 33 355

    [23]

    Snyder G J, Caillat T, Fleurial J P 2011 J. Mater. Res. 15 2789Google Scholar

  • 图 1  (a) 二维A2BX4化合物的晶体结构图; (b)—(f) 筛选出的5种稳定A2BX4化合物的化学势能窗口图, 分别对应Nb2SiTe4, Nb2GeTe4, Nb2SiSe4, Nb2SnTe4和Ta2GeTe4.

    Fig. 1.  (a) Crystal structure of A2BX4 compounds; (b)–(f) Chemical potential windows for 5 stable A2BX4 compounds corresponding to Nb2SiTe4, Nb2GeTe4, Nb2SiSe4, Nb2SnTe4 and Ta2GeTe4, respectively.

    图 2  0 K下基于PBE计算的声子谱 (a) Nb2SiSe4; (b) Nb2SnTe4; (c) Ta2GeTe4

    Fig. 2.  PBE calculated phonon dispersions for (a) Nb2SiSe4, (b) Nb2SnTe4 and (c) Ta2GeTe4 under 0 K.

    图 3  HSE06计算的能带结构 (a) Nb2SiSe4; (b) Nb2SiTe4; (c) Nb2GeTe4; (d) Nb2SnTe4; (e) Ta2GeTe4. 其中蓝线(绿线)代表Nb2SiTe4的VBM(CBM)位置, 数字表示相比Nb2SiTe4 VBM(CBM)的移动

    Fig. 3.  HSE06 calculated band structures for (a) Nb2SiSe4, (b) Nb2SiTe4, (c) Nb2GeTe4, (d) Nb2SnTe4 and (e) Ta2GeTe4, respectively. Lines represent for VBM (blue) and CBM (green) of Nb2SiTe4. Numbers indicate VBM(CBM) shifts compared with Nb2SiTe4.

    图 4  计算的5种A2BX4光吸收谱 (a) 沿x方向; (b) 沿y方向

    Fig. 4.  Calculated optical absorption coefficients for five A2BX4 compounds along (a) x direction and (b) y directions.

    图 5  PBE计算的外加 ± 5%应力时A2BX4的能带结构图 (a) Nb2SiSe4; (b) Nb2SiTe4; (c) Nb2GeTe4; (d) Nb2SnTe4; (e) Ta2GeTe4; (f), (g), (h)为对应外应力下Nb2SiTe4 VBM的电荷密度图

    Fig. 5.  PBE calculated band structures for A2BX4 under ± 5% strain: (a) Nb2SiSe4; (b) Nb2SiTe4; (c) Nb2GeTe4; (d) Nb2SnTe4; (e) Ta2GeTe4; (f), (g), (h) VBM charge density maps of Nb2SiTe4 under strains.

    表 1  A2BX4化合物的理论晶格常数与带隙值

    Table 1.  Theoretical lattice constants and bandgaps of stable A2BX4 compounds.

    晶格常数的理论值(文献值)/Å带隙的理论值(文献值)/eV
    ab PBEHSE06
    Nb2SiSe46.047.740.440.74
    Nb2SiTe46.40 (6.30[9])7.92 (7.90[9])0.51 (0.51[10])0.87 (0.80[10], 0.84[11])
    Nb2GeTe46.54 (6.45[22])7.95 (7.92[22])0.41 (0.41[10])0.67 (0.63[10], 0.66[11])
    Nb2SnTe46.818.150.310.51
    Ta2GeTe46.547.930.350.59
    下载: 导出CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Fan Y, Liu X, Wang J, Ai H, Zhao M 2018 Phys. Chem. Chem. Phys. 20 11369Google Scholar

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [4]

    Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, Macdonald A H, Niu Q 2014 Phys. Rev. Lett. 112 116404Google Scholar

    [5]

    Ishii T, Sato T 1983 J. Cryst. Growth 61 689Google Scholar

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [7]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [8]

    Venkatasubramanian R, Colpitts T, Watko E, Lamvik M, El-Masry N 1997 J. Cryst. Growth 170 817Google Scholar

    [9]

    Zhao M, Xia W, Wang Y, Luo M, Tian Z, Guo Y, Hu W, Xue J 2019 ACS Nano 13 10705Google Scholar

    [10]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [11]

    Zhang T, Ma Y, Xu X, Lei C, Huang B, Dai Y 2020 J. Phys. Chem. Lett. 11 497Google Scholar

    [12]

    Jain S C, Harker A H, Cowley R A 1997 Philos. Mag. A 75 1461Google Scholar

    [13]

    Wosinski T, Yastrubchak O, Makosa A, Figielski T 2000 J. Phys. Condens. Matter 12 10153Google Scholar

    [14]

    Smith A M, Mohs A M, Nie S 2009 Nat. Nanotechnol. 4 56Google Scholar

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [18]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [19]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [20]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [21]

    Tremel W, Kleinke H, Derstroff V, Reisner C 1995 J. Alloys. Compd. 219 73Google Scholar

    [22]

    Gareh J, Boucher F, Evain M 1996 Eur. J. Solid State Inorg. Chem. 33 355

    [23]

    Snyder G J, Caillat T, Fleurial J P 2011 J. Mater. Res. 15 2789Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究.  , 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [3] 王晓菲, 孟威威, 赵培丽, 贾双凤, 郑赫, 王建波. 单层Nb2SiTe4基化合物的带隙异常变化.  , 2023, 72(5): 057102. doi: 10.7498/aps.72.20222058
    [4] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究.  , 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [5] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究.  , 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [6] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性.  , 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [7] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [8] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究.  , 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究.  , 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [11] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究.  , 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [12] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [13] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究.  , 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [14] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究.  , 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [15] 张辉, 张国英, 肖明珠, 路广霞, 朱圣龙, 张轲. 金属元素替代对Li4BN3H10储氢材料释氢影响机理的第一性原理研究.  , 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
    [16] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测.  , 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [17] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [18] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究.  , 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究.  , 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
计量
  • 文章访问数:  7546
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-06-18
  • 上网日期:  2020-09-30
  • 刊出日期:  2020-10-05

/

返回文章
返回
Baidu
map