Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region

Wang Rui-Jun Deng Bin Wang Hong-Qiang Qin Yu-Liang

Citation:

Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region

Wang Rui-Jun, Deng Bin, Wang Hong-Qiang, Qin Yu-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the terahertz and far infrared region, aluminum is in a state of transition from conductor to dielectric, and the research of the interaction between aluminous target and electromagnetic wave is meaningful for scattering prediction of targets. With the available error criterion model, dielectric function of aluminum is determined by fitting to experimental data in the terahertz and far infrared region. The transmitted parameters in aluminum are deduced by considering different loss mechanisms. Reflection and transmission characteristics on the interface of aluminum are investigated, and the reflection coefficients are given as a function of frequency. Results show that the transmitted parameters in aluminum keep their continuity and coherency from microwave to terahertz frequency. RCS (radar cross-section) results of aluminum plates computed by IBC method demonstrate that the increased wave impedance of aluminous targets has little impact on its backscattering, and the polished aluminous plate or sphere can still be treated as a perfect electrical conductor and used as a reference for RCS calibration.
    • Funds: Project supported by the National Science Fund for Young Scientists of China (Grant Nos. 61302148, 61101182), and the Science Foundation for Distinguished Young Scholars of Hunan Province, China (Grant No.11JJ1010).
    [1]

    Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X 2007 Proc. IEEE 95 1514

    [2]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. THz Sci. Technol. 1 169

    [3]

    Li Z, Cui T J, Zhong X J, Tao Y B, Lin H 2009 IEEE Antennas Propag. Mag. 51 39

    [4]

    Zhong X J, Cui T J, Li Z, Tao Y B, Lin H 2007 J. Electromagn Waves and Appl. 21 2331

    [5]

    Yang Y, Yao J Q, Zhang J S, Wang L 2013 J. Infrared. Millim. Waves 32 36 (in Chinese) [杨洋, 姚建铨, 张镜水, 王力 2013 红外与毫米波学报 32 36]

    [6]

    Zurk L M, Orlowski B, Sundberg G, Winebrenner D P, Thorsos E I, Chen A 2007 Proc. SPIE San Jose, CA, United states, January 21-22, 2007 p64720A

    [7]

    Yang Y, Jing L 2013 Laser & Infrared 43 155 (in Chinese) [杨洋, 景磊 2013 激光与红外 43 155]

    [8]

    Zhang Y P, Zhang H Y, Geng Y F, Tan X L, Yao J Q 2009 Acta Phys. Sin. 58 7030 (in Chinese)[张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨 2009 58 7030]

    [9]

    Wu L, Ling F R, Zuo Z G, Liu JS, Yao J Q 2012 Chin. Phys. B 21 017802

    [10]

    Wu L, Jiang L K, Yuan C, Ding X, Yao J Q 2014 Chin. Phys. B 23 034212

    [11]

    Mayank K, Brian W H, Bernd M F, Derek A 2012 Appl. Phys. Lett. 100 011107

    [12]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese)[杨玉平, 冯帅, 冯辉, 潘学聪, 王艺全, 王文忠 2011 60 027802]

    [13]

    Zhang H Y, Liu M, Yin Y H, Wu Z X, Shen R L, Zhang Y P 2013 Acta Phys. Sin. 62 194207 (in Chinese)[张会云, 刘蒙, 尹贻恒, 吴志心, 申瑞龙, 张玉萍 2013 62 194207]

    [14]

    Schulz L G, Tangherlini F R 1954 J. Opt. Soc. Am. 44 362

    [15]

    Shiles E, Sasaki T, Inokuti M, Smith D Y 1980 Phys. Rev. B 22 1612

    [16]

    Ordal M A, Bell R J, Alexander R W, Long L L 1985 Appl. Opt. 24 4493

    [17]

    Yasuda H, Hosako I 2008 Jpn. J. Appl. Phys. 47 1632

    [18]

    Ma Y F, Su P J, Gong X Q, Yang J, Du Y L, Guo T M, Yuan B 2011 Chin. Phys. Lett. 28 97803

    [19]

    Sun W F, Wang X K, Zhang Y 2009 Chin. Phys. Lett. 26 114210

    [20]

    Lloyd-Hughes J, Jeon T 2012 J. Infrared Milli Terahz Waves 33 871

    [21]

    Laman N, Grischkowsky D 2007 Appl. Phys. Lett. 90 122115

    [22]

    Laman N, Grischkowsky D 2008 Appl. Phys. Lett. 93 051105

    [23]

    Luo Y, Fernandez-Dominguez A I, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901

    [24]

    Ordal M A, Bel R J, Alexander R W, Newquist L A, Querry M R 1988 Appl. Opt. 27 1203

    [25]

    Rakic A D 1995 Appl. Opt. 34 4755

    [26]

    Lucyszyn S 2004 IEE Proc. Microw., Antennas and Propag. 151 321

    [27]

    Lucyszyn S, Zhou Y 2010 Prog. Electromagn. Res. pier- 101 257

    [28]

    David R L 2000 CRC Handbook of Chemistry & Physics (Version 2000) (F L, USA: CRC Press)

    [29]

    Jackson J D 1999 Classical Electrodynamics (3rd Ed.) (N J, USA: John Wileys & Sons)

    [30]

    Markovic M I, Rakic A D 1990 Appl. Opt. 29 3479

    [31]

    Fang J X, Yin Z W 2000 Dielectric Physics (Beijing: Science Press) p24 (in Chinese) [方俊鑫, 殷之文2000电介质物理学(北京: 科学出版社)第24页]

    [32]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2rd Version) (Beijing: Publishing House of Electronics Industry) (in Chinese) [张克潜, 李德杰2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社)]

    [33]

    Fox M 2001 Optical Properties of Solids (London U K: Oxford University Press) p149

    [34]

    Bondeson A, Rylander T, Ingelstrom P 2005 Computational Electromagnetics (Berlin Germany: Springer) p153

  • [1]

    Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X 2007 Proc. IEEE 95 1514

    [2]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. THz Sci. Technol. 1 169

    [3]

    Li Z, Cui T J, Zhong X J, Tao Y B, Lin H 2009 IEEE Antennas Propag. Mag. 51 39

    [4]

    Zhong X J, Cui T J, Li Z, Tao Y B, Lin H 2007 J. Electromagn Waves and Appl. 21 2331

    [5]

    Yang Y, Yao J Q, Zhang J S, Wang L 2013 J. Infrared. Millim. Waves 32 36 (in Chinese) [杨洋, 姚建铨, 张镜水, 王力 2013 红外与毫米波学报 32 36]

    [6]

    Zurk L M, Orlowski B, Sundberg G, Winebrenner D P, Thorsos E I, Chen A 2007 Proc. SPIE San Jose, CA, United states, January 21-22, 2007 p64720A

    [7]

    Yang Y, Jing L 2013 Laser & Infrared 43 155 (in Chinese) [杨洋, 景磊 2013 激光与红外 43 155]

    [8]

    Zhang Y P, Zhang H Y, Geng Y F, Tan X L, Yao J Q 2009 Acta Phys. Sin. 58 7030 (in Chinese)[张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨 2009 58 7030]

    [9]

    Wu L, Ling F R, Zuo Z G, Liu JS, Yao J Q 2012 Chin. Phys. B 21 017802

    [10]

    Wu L, Jiang L K, Yuan C, Ding X, Yao J Q 2014 Chin. Phys. B 23 034212

    [11]

    Mayank K, Brian W H, Bernd M F, Derek A 2012 Appl. Phys. Lett. 100 011107

    [12]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese)[杨玉平, 冯帅, 冯辉, 潘学聪, 王艺全, 王文忠 2011 60 027802]

    [13]

    Zhang H Y, Liu M, Yin Y H, Wu Z X, Shen R L, Zhang Y P 2013 Acta Phys. Sin. 62 194207 (in Chinese)[张会云, 刘蒙, 尹贻恒, 吴志心, 申瑞龙, 张玉萍 2013 62 194207]

    [14]

    Schulz L G, Tangherlini F R 1954 J. Opt. Soc. Am. 44 362

    [15]

    Shiles E, Sasaki T, Inokuti M, Smith D Y 1980 Phys. Rev. B 22 1612

    [16]

    Ordal M A, Bell R J, Alexander R W, Long L L 1985 Appl. Opt. 24 4493

    [17]

    Yasuda H, Hosako I 2008 Jpn. J. Appl. Phys. 47 1632

    [18]

    Ma Y F, Su P J, Gong X Q, Yang J, Du Y L, Guo T M, Yuan B 2011 Chin. Phys. Lett. 28 97803

    [19]

    Sun W F, Wang X K, Zhang Y 2009 Chin. Phys. Lett. 26 114210

    [20]

    Lloyd-Hughes J, Jeon T 2012 J. Infrared Milli Terahz Waves 33 871

    [21]

    Laman N, Grischkowsky D 2007 Appl. Phys. Lett. 90 122115

    [22]

    Laman N, Grischkowsky D 2008 Appl. Phys. Lett. 93 051105

    [23]

    Luo Y, Fernandez-Dominguez A I, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901

    [24]

    Ordal M A, Bel R J, Alexander R W, Newquist L A, Querry M R 1988 Appl. Opt. 27 1203

    [25]

    Rakic A D 1995 Appl. Opt. 34 4755

    [26]

    Lucyszyn S 2004 IEE Proc. Microw., Antennas and Propag. 151 321

    [27]

    Lucyszyn S, Zhou Y 2010 Prog. Electromagn. Res. pier- 101 257

    [28]

    David R L 2000 CRC Handbook of Chemistry & Physics (Version 2000) (F L, USA: CRC Press)

    [29]

    Jackson J D 1999 Classical Electrodynamics (3rd Ed.) (N J, USA: John Wileys & Sons)

    [30]

    Markovic M I, Rakic A D 1990 Appl. Opt. 29 3479

    [31]

    Fang J X, Yin Z W 2000 Dielectric Physics (Beijing: Science Press) p24 (in Chinese) [方俊鑫, 殷之文2000电介质物理学(北京: 科学出版社)第24页]

    [32]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2rd Version) (Beijing: Publishing House of Electronics Industry) (in Chinese) [张克潜, 李德杰2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社)]

    [33]

    Fox M 2001 Optical Properties of Solids (London U K: Oxford University Press) p149

    [34]

    Bondeson A, Rylander T, Ingelstrom P 2005 Computational Electromagnetics (Berlin Germany: Springer) p153

  • [1] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [2] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [3] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [4] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [5] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [6] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [8] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [9] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [10] Zhu Yan-Ju, Jiang Yue-Song, Hua Hou-Qiang, Zhang Chong-Hui, Xin Can-Wei. Modified equivalent current approximation and graphical electromagnetic computing method of analyzing radar cross section of missile target scatterer covered with thermal protection layer. Acta Physica Sinica, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [11] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [12] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [14] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [15] Wang Fei, Wei Bing. Semi-analytical recursive convolution algorithm in the finite-difference time domain analysis of anisotropic dispersive medium. Acta Physica Sinica, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [16] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [17] Zhang Yu, Yang Xi, Gou Ming-Jiang, Shi Qing-Fan. Two inversion methods for electromagnetic scattering. Acta Physica Sinica, 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [18] Yang Li-Xia, Ge De-Biao, Wei Bing. Three-dimensional finite-difference time-domain implementation for anisotropic dispersive medium using recursive convolution method. Acta Physica Sinica, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [19] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] Liu Shao-Bin, Zhang Guang-Fu, Yuan Nai-Chang. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas. Acta Physica Sinica, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
Metrics
  • Abstract views:  7092
  • PDF Downloads:  1066
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2013
  • Accepted Date:  25 March 2014
  • Published Online:  05 July 2014

/

返回文章
返回
Baidu
map