-
Carbon nanotubes, one of the most advanced nanoscale materials, have attracted much research attention since they exhibited semiconductor, metal or insulator properties depending on their geometric structures. Carbon nanotubes have great potential in various applications in electronic and optical device. Dopants to the carbon nanotubes intentionally could offer a possible route to change and tune their electronic, optical properties. Another important and effective method is to deform the carbon nanotubes structure. Superlattice structures can offer extra degrees of freedom in designing electronic, optical devices. To understand the involved mechanism, in this paper, the geometry structures, electronic structures and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N under different shear deformations are investigated by the first-principles method through using the CASTEP code in MS 6.0. It is found that the structures of carbon nanotube superlattices can be dramatically changed by shear deformation. When the shear deformation is less than 9%, the optimization geometry structures of carbon nanotube superlattices are still similar to tubular structures, when the shear deformation is greater than 12%, the geometry structures of these systems have large distortions. The results about the binding energy show that the shear deformation changes the stability of the armchair doped carbon nanotube superlattice. The larger the shear deformation, the lower the stability of the doped carbon nanotube superlattices is. The analysis of charge population show that the covalent bond and ionic bond coexist in the armchair carbon nanotube superlattices doped cyclically alternately with B and N. The band gap of the carbon nanotube superlattice is affected by N, B dopants, as a result, the carbon nanotube superlattice changes from a metal to a semiconductor. Compared with the (5, 5) nanotube superlattices, the band gaps of the (7, 7), (9, 9) doped carbon nanotube superlattices increase. With increasing the shear deformation, the band gap of the doped carbon nanotube superlattices decreases gradually, when the shear deformation is greater than 12%, the band gap changes into 0 eV, the carbon nanotube superlattice changes back into a metal from a semiconductor. The analysis of density of states obtains the same conclusions as the energy band analysis. In optical properties, compared with the armchair carbon nanotube superlattices doped cyclically alternately with B and N without shear deformation, those systems under shear deformation have the peaks of the absorption coefficient and the reflectivity that are all reduced, and are all red-shifted.
-
Keywords:
- B and N-doped carbon nanotubes superlattices /
- electronic structure /
- shear deformation /
- optical properties
[1] Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese) [魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能 2011 60 027307]
[2] Jin L, Fu H G, Xie Y, Yu H T 2012 Chin. Phys. B 21 057901
[3] Kalbac M, Kavan L, Dunsch L, Dresselhaus M S 2008 Nano Lett. 8 1257
[4] Yin L C, Saito R, Dresselhaus M S 2010 Nano Lett. 10 3290
[5] Taheri S, Shadman M, Soltanabadi A, Ahadi Z 2014 Int. Nano Lett. 4 81
[6] Nawazish A K, Sadaf A 2012 J. Alloys Compd. 538 183
[7] Zhang L, Cao X W, Feng M, Wang Y F 2008 J. Light Scatt. 20 295 (in Chinese) [张磊, 曹学伟, 冯敏, 王玉芳 2008 光散射学报 20 295]
[8] Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese) [李瑞, 孙丹海 2014 63 056101]
[9] Wu H L, Qiu J S, Hao C, Tang Z A 2006 J. Dalian Univ. Tech. 46 328 (in Chinese) [吴红丽, 邱介山, 郝策, 唐祯安 2006 大连理工大学学报 46 328]
[10] Zhang H, Chen X H, Zhang Z H, Qiu M 2006 Acta Phys. Chim. Sin. 22 1101 (in Chinese) [张华, 陈小华, 张振华, 邱明 2006 物理化学学报 22 1101]
[11] Yuan J H, Cheng Y M 2007 Acta Phys. Chim. Sin. 23 889 (in Chinese) [袁剑辉, 程玉民 2007 物理化学学报 23 889]
[12] Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 59 527]
[13] Niu W X, Zhang H, Gong M, Cheng X L 2013 Chin. Phys. B 22 066802
[14] Barghi S H, Tsotsis T T, Sahimi M 2014 Int. J. Hydrogen Energy 39 21107
[15] Zheng Q S, Xu Z P, Wang L F 2004 Adv. Mech. 34 97 (in Chinese) [郑泉水, 徐志平, 王立峰 2004 力学进展 34 97]
[16] Sagara T, Kurumi S, Suzuki K 2014 Appl. Surf. Sci. 292 39
[17] Cui S W, Zhu R Z, Wang X S, Yang H X 2014 Chin. Phys. B 23 106105
[18] Shamsudin M S, Mohammad M, Zobir S A M, Asli N A, Bakar S A, Abdullah S, Yahya S Y S, Mahmood M R 2013 J. Nanostruct. Chem. 3 13
[19] Cheng C P, Chen G H, Li W H, Luo C L 2012 J. Nanjing Norm. Univ. ( Natural Science Edition) 35 30 (in Chinese) [程承平, 陈贵虎, 李伟红, 罗成林 2012 南京师大学报(自然科学版) 35 30]
[20] Wu Y D, Zhang X C, Zhong W F, Liang Y D 2006 J. Huazhong Univ. Sci. Tech. (Nature Science Edition) 34 110 (in Chinese) [吴永东, 张小春, 钟伟芳, 梁以德 2006 华中科技大学学报(自然科学版) 34 110]
[21] Ghavamian A, Rahmandoust M, Öchsner A 2013 Composites Part B 44 52
[22] Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P 2013 Polymer 54 5865
[23] Wei J W, Pu L C, Hu N, Hu H F, Zeng H, Liang J W 2011 J. Chongqing Univ. Tech. (Natural Science) 35 94 (in Chinese) [韦建卫, 蒲利春, 胡南, 胡慧芳, 曾晖, 梁君武 2011 重庆理工大学学报(自然科学) 35 94]
[24] Bai X D, Wang E G 2009 Chin. Basic Sci. 11 28 (in Chinese) [白雪冬, 王恩哥 2009 中国基础科学 11 28]
[25] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[26] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[27] Vanderbilt D 1990 Phys. Rev. B 41 7892
-
[1] Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese) [魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能 2011 60 027307]
[2] Jin L, Fu H G, Xie Y, Yu H T 2012 Chin. Phys. B 21 057901
[3] Kalbac M, Kavan L, Dunsch L, Dresselhaus M S 2008 Nano Lett. 8 1257
[4] Yin L C, Saito R, Dresselhaus M S 2010 Nano Lett. 10 3290
[5] Taheri S, Shadman M, Soltanabadi A, Ahadi Z 2014 Int. Nano Lett. 4 81
[6] Nawazish A K, Sadaf A 2012 J. Alloys Compd. 538 183
[7] Zhang L, Cao X W, Feng M, Wang Y F 2008 J. Light Scatt. 20 295 (in Chinese) [张磊, 曹学伟, 冯敏, 王玉芳 2008 光散射学报 20 295]
[8] Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese) [李瑞, 孙丹海 2014 63 056101]
[9] Wu H L, Qiu J S, Hao C, Tang Z A 2006 J. Dalian Univ. Tech. 46 328 (in Chinese) [吴红丽, 邱介山, 郝策, 唐祯安 2006 大连理工大学学报 46 328]
[10] Zhang H, Chen X H, Zhang Z H, Qiu M 2006 Acta Phys. Chim. Sin. 22 1101 (in Chinese) [张华, 陈小华, 张振华, 邱明 2006 物理化学学报 22 1101]
[11] Yuan J H, Cheng Y M 2007 Acta Phys. Chim. Sin. 23 889 (in Chinese) [袁剑辉, 程玉民 2007 物理化学学报 23 889]
[12] Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 59 527]
[13] Niu W X, Zhang H, Gong M, Cheng X L 2013 Chin. Phys. B 22 066802
[14] Barghi S H, Tsotsis T T, Sahimi M 2014 Int. J. Hydrogen Energy 39 21107
[15] Zheng Q S, Xu Z P, Wang L F 2004 Adv. Mech. 34 97 (in Chinese) [郑泉水, 徐志平, 王立峰 2004 力学进展 34 97]
[16] Sagara T, Kurumi S, Suzuki K 2014 Appl. Surf. Sci. 292 39
[17] Cui S W, Zhu R Z, Wang X S, Yang H X 2014 Chin. Phys. B 23 106105
[18] Shamsudin M S, Mohammad M, Zobir S A M, Asli N A, Bakar S A, Abdullah S, Yahya S Y S, Mahmood M R 2013 J. Nanostruct. Chem. 3 13
[19] Cheng C P, Chen G H, Li W H, Luo C L 2012 J. Nanjing Norm. Univ. ( Natural Science Edition) 35 30 (in Chinese) [程承平, 陈贵虎, 李伟红, 罗成林 2012 南京师大学报(自然科学版) 35 30]
[20] Wu Y D, Zhang X C, Zhong W F, Liang Y D 2006 J. Huazhong Univ. Sci. Tech. (Nature Science Edition) 34 110 (in Chinese) [吴永东, 张小春, 钟伟芳, 梁以德 2006 华中科技大学学报(自然科学版) 34 110]
[21] Ghavamian A, Rahmandoust M, Öchsner A 2013 Composites Part B 44 52
[22] Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P 2013 Polymer 54 5865
[23] Wei J W, Pu L C, Hu N, Hu H F, Zeng H, Liang J W 2011 J. Chongqing Univ. Tech. (Natural Science) 35 94 (in Chinese) [韦建卫, 蒲利春, 胡南, 胡慧芳, 曾晖, 梁君武 2011 重庆理工大学学报(自然科学) 35 94]
[24] Bai X D, Wang E G 2009 Chin. Basic Sci. 11 28 (in Chinese) [白雪冬, 王恩哥 2009 中国基础科学 11 28]
[25] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[26] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[27] Vanderbilt D 1990 Phys. Rev. B 41 7892
Catalog
Metrics
- Abstract views: 6056
- PDF Downloads: 156
- Cited By: 0