-
The method of co-doping is very useful to improve the photocatalytic performances of titanium dioxide nanotubes. The absorption capacity to the visible light of the titanium dioxide nanotubes can be improved significantly in experiment by doping both N and F in titanium dioxide nanotubes, but the theoretical explanations are still not clear. Doping the atom N alone, the atom F alone, and both N and F in titanium dioxide nanotubes respectively, their atomic structures, electronic properties and optical performance are studied by the first principles method based on the density functional theory. It is found that formation energies are lower in titanium-rich environment than that in oxygen-rich environment. In titanium-rich environment, the N-F co-doped TiO2 nanotube has the low formation energy and stable thermodynamic system compared with the N alone and the F alone doped TiO2 nanotube. Besides, the O3C can be replaced more easily than the O2C when doping N alone, F alone and co-doping N-F in TiO2 nanotube. By analyzing the energy band, we can find that the band gap changes little with doping N and the change of the band gap for the co-doping N-F case is the most prominent, which reduces by 0.557 eV compared with that for the un-doped TiO2 nanotube case, and this is mainly from the contributions of the impurity level near the top of the valence band. Besides, the different charges are calculated and it is indicated that the ability to gain electrons of N is stronger than that of F, and through analyzing the photocatalytic performance, it is found that though the gap of the nanotube is larger than that of the body, the reducibility of nanotube is better than that of the body. Both the reducibility and the oxidability of the nanotube are reduced but its activity is not lost when co-coping the atoms of N and F in titanium dioxide nanotubes. Moreover, the optical absorption spectrum shows that the red shift phenomenon is obvious for doped system and also for the co-doped system. Therefore, co-doping both N and F in titanium dioxide nanotubes is the most useful method to improve the photocatalytic performances of the TiO2 nanotubes.
-
Keywords:
- titanium dioxide nanotube /
- doped /
- electronic structure /
- optical property
[1] Regonini D, Bowen C R, Jaroenworaluck A 2013 Mater. Sci. Eng. R 74 377
[2] Fujishima A, Honda K 1972 Nature 238 37
[3] Bessekhouad Y, Robert D, Weber J V, Chaoui N 2004 J. Phoche. Photobiol. A: Chem. 167 49
[4] Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D
[5] Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F 2012 Nano Lett. 12 1503
[6] Yang D J, Park H, Cho S J, Kim H G, Choi W Y 2008 J. Phys. Chem. Solids 69 1272
[7] Orzali T, Casarin M, Granozzi G, Sambi M, Vittadini A 2006 Phys. Rev. Lett. 971 56101
[8] Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106
[9] Lee W J, Lee J M, Kochuveedu S T, Han T H, Jeong H Y, Park M, Yun J M, Kwon J, No K, Kim D H, Kim S O 2012 ACS Nano 6 935
[10] Tang Z R, Yin X, Zhang Y H, Xu Y J
[11] Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]
[12] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]
[13] Wang W S, Wang D H, Qu W G, Xu A W 2012 J. Phys. Chem. C 116 19893
[14] Wei M, Liu Y, Gu Z Z, Liu Z D 2011 J. Chin. Chem. Soc. 58 516
[15] Pang Y L, Lim S, Ong H C, Chong W T 2014 Appl. Catal. A 481 127
[16] Hoyer P 1996 Langmuir 12 1411
[17] Xie Q, Meng Q Q, Zhuang G L, Wang J G, Li X N 2012 Int. J. Quantum Chem. 112 2585
[18] Liu H, Lin M H, Tan K 2012 Acta Phys. -Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]
[19] Dong H Q, Pan X, Xie Q, Meng Q Q, Gao J R, Wang J G 2012 Acta Phys. -Chim. Sin. 28 44 (in Chinese) [ 董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国 2012 物理化学学报 28 44]
[20] Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24
[21] Yuan B, Wang Y, Bian H D, Shen T K 2013 Appl. Surf. Sci. 280 523
[22] Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689
[23] Suzuki T M, Kitahara G, Arai T, Matsuoka Y, Morikawa T 2014 Chem. Commun. 50 7614
[24] Li Q, Shang J K 2009 Environ. Sci. Technol. 43 8923
[25] Chen Q L, Tang C Q 2009 Acta Phys. -Chim. Sin. 25 915 (in Chinese) [陈琦丽, 唐超群 2009 物理化学学报 25 915]
[26] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Blochl P E 1994 Phys. Rev. B 50 17953
[29] Mowbray D J, Martinez J I, García-Lastra J M, Thygesen K S, Jacobsen K W 2009 J. Phys. Chem. C 113 12301
[30] Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168
[31] Yang K S, Dai Y, Huang B, Whangbo M H 2008 Chem. Mater. 20 6529
[32] Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军 2010 59 1314]
[33] Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102
[34] Yalçn Y, Kılıç M, Çınar Z 2010 Appl. Catal. B: Environ. 99 469
[35] Banisharif A, Khodadadi A A, Mortazavi Y, Firooz A A, Beheshtian J, Agah S, Menbari S 2014 Appl. Catal. B 165 209
[36] Yang Y Q, Zhang R R, Li J B, Lin S W 2014 Nanoscale Res. Lett. 9 46
[37] Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232
-
[1] Regonini D, Bowen C R, Jaroenworaluck A 2013 Mater. Sci. Eng. R 74 377
[2] Fujishima A, Honda K 1972 Nature 238 37
[3] Bessekhouad Y, Robert D, Weber J V, Chaoui N 2004 J. Phoche. Photobiol. A: Chem. 167 49
[4] Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D
[5] Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F 2012 Nano Lett. 12 1503
[6] Yang D J, Park H, Cho S J, Kim H G, Choi W Y 2008 J. Phys. Chem. Solids 69 1272
[7] Orzali T, Casarin M, Granozzi G, Sambi M, Vittadini A 2006 Phys. Rev. Lett. 971 56101
[8] Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106
[9] Lee W J, Lee J M, Kochuveedu S T, Han T H, Jeong H Y, Park M, Yun J M, Kwon J, No K, Kim D H, Kim S O 2012 ACS Nano 6 935
[10] Tang Z R, Yin X, Zhang Y H, Xu Y J
[11] Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]
[12] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]
[13] Wang W S, Wang D H, Qu W G, Xu A W 2012 J. Phys. Chem. C 116 19893
[14] Wei M, Liu Y, Gu Z Z, Liu Z D 2011 J. Chin. Chem. Soc. 58 516
[15] Pang Y L, Lim S, Ong H C, Chong W T 2014 Appl. Catal. A 481 127
[16] Hoyer P 1996 Langmuir 12 1411
[17] Xie Q, Meng Q Q, Zhuang G L, Wang J G, Li X N 2012 Int. J. Quantum Chem. 112 2585
[18] Liu H, Lin M H, Tan K 2012 Acta Phys. -Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]
[19] Dong H Q, Pan X, Xie Q, Meng Q Q, Gao J R, Wang J G 2012 Acta Phys. -Chim. Sin. 28 44 (in Chinese) [ 董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国 2012 物理化学学报 28 44]
[20] Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24
[21] Yuan B, Wang Y, Bian H D, Shen T K 2013 Appl. Surf. Sci. 280 523
[22] Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689
[23] Suzuki T M, Kitahara G, Arai T, Matsuoka Y, Morikawa T 2014 Chem. Commun. 50 7614
[24] Li Q, Shang J K 2009 Environ. Sci. Technol. 43 8923
[25] Chen Q L, Tang C Q 2009 Acta Phys. -Chim. Sin. 25 915 (in Chinese) [陈琦丽, 唐超群 2009 物理化学学报 25 915]
[26] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Blochl P E 1994 Phys. Rev. B 50 17953
[29] Mowbray D J, Martinez J I, García-Lastra J M, Thygesen K S, Jacobsen K W 2009 J. Phys. Chem. C 113 12301
[30] Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168
[31] Yang K S, Dai Y, Huang B, Whangbo M H 2008 Chem. Mater. 20 6529
[32] Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军 2010 59 1314]
[33] Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102
[34] Yalçn Y, Kılıç M, Çınar Z 2010 Appl. Catal. B: Environ. 99 469
[35] Banisharif A, Khodadadi A A, Mortazavi Y, Firooz A A, Beheshtian J, Agah S, Menbari S 2014 Appl. Catal. B 165 209
[36] Yang Y Q, Zhang R R, Li J B, Lin S W 2014 Nanoscale Res. Lett. 9 46
[37] Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232
Catalog
Metrics
- Abstract views: 7741
- PDF Downloads: 429
- Cited By: 0