Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study

Zhu Xue-Wen Xu Li-Chun Liu Rui-Ping Yang Zhi Li Xiu-Yan

Citation:

N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study

Zhu Xue-Wen, Xu Li-Chun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The method of co-doping is very useful to improve the photocatalytic performances of titanium dioxide nanotubes. The absorption capacity to the visible light of the titanium dioxide nanotubes can be improved significantly in experiment by doping both N and F in titanium dioxide nanotubes, but the theoretical explanations are still not clear. Doping the atom N alone, the atom F alone, and both N and F in titanium dioxide nanotubes respectively, their atomic structures, electronic properties and optical performance are studied by the first principles method based on the density functional theory. It is found that formation energies are lower in titanium-rich environment than that in oxygen-rich environment. In titanium-rich environment, the N-F co-doped TiO2 nanotube has the low formation energy and stable thermodynamic system compared with the N alone and the F alone doped TiO2 nanotube. Besides, the O3C can be replaced more easily than the O2C when doping N alone, F alone and co-doping N-F in TiO2 nanotube. By analyzing the energy band, we can find that the band gap changes little with doping N and the change of the band gap for the co-doping N-F case is the most prominent, which reduces by 0.557 eV compared with that for the un-doped TiO2 nanotube case, and this is mainly from the contributions of the impurity level near the top of the valence band. Besides, the different charges are calculated and it is indicated that the ability to gain electrons of N is stronger than that of F, and through analyzing the photocatalytic performance, it is found that though the gap of the nanotube is larger than that of the body, the reducibility of nanotube is better than that of the body. Both the reducibility and the oxidability of the nanotube are reduced but its activity is not lost when co-coping the atoms of N and F in titanium dioxide nanotubes. Moreover, the optical absorption spectrum shows that the red shift phenomenon is obvious for doped system and also for the co-doped system. Therefore, co-doping both N and F in titanium dioxide nanotubes is the most useful method to improve the photocatalytic performances of the TiO2 nanotubes.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51401142) and the National Natural Science Foundation of Shanxi Province, China (Grant No. 2012011021-3).
    [1]

    Regonini D, Bowen C R, Jaroenworaluck A 2013 Mater. Sci. Eng. R 74 377

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Bessekhouad Y, Robert D, Weber J V, Chaoui N 2004 J. Phoche. Photobiol. A: Chem. 167 49

    [4]

    Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D

    [5]

    Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F 2012 Nano Lett. 12 1503

    [6]

    Yang D J, Park H, Cho S J, Kim H G, Choi W Y 2008 J. Phys. Chem. Solids 69 1272

    [7]

    Orzali T, Casarin M, Granozzi G, Sambi M, Vittadini A 2006 Phys. Rev. Lett. 971 56101

    [8]

    Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [9]

    Lee W J, Lee J M, Kochuveedu S T, Han T H, Jeong H Y, Park M, Yun J M, Kwon J, No K, Kim D H, Kim S O 2012 ACS Nano 6 935

    [10]

    Tang Z R, Yin X, Zhang Y H, Xu Y J

    [11]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]

    [12]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]

    [13]

    Wang W S, Wang D H, Qu W G, Xu A W 2012 J. Phys. Chem. C 116 19893

    [14]

    Wei M, Liu Y, Gu Z Z, Liu Z D 2011 J. Chin. Chem. Soc. 58 516

    [15]

    Pang Y L, Lim S, Ong H C, Chong W T 2014 Appl. Catal. A 481 127

    [16]

    Hoyer P 1996 Langmuir 12 1411

    [17]

    Xie Q, Meng Q Q, Zhuang G L, Wang J G, Li X N 2012 Int. J. Quantum Chem. 112 2585

    [18]

    Liu H, Lin M H, Tan K 2012 Acta Phys. -Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]

    [19]

    Dong H Q, Pan X, Xie Q, Meng Q Q, Gao J R, Wang J G 2012 Acta Phys. -Chim. Sin. 28 44 (in Chinese) [ 董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国 2012 物理化学学报 28 44]

    [20]

    Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24

    [21]

    Yuan B, Wang Y, Bian H D, Shen T K 2013 Appl. Surf. Sci. 280 523

    [22]

    Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [23]

    Suzuki T M, Kitahara G, Arai T, Matsuoka Y, Morikawa T 2014 Chem. Commun. 50 7614

    [24]

    Li Q, Shang J K 2009 Environ. Sci. Technol. 43 8923

    [25]

    Chen Q L, Tang C Q 2009 Acta Phys. -Chim. Sin. 25 915 (in Chinese) [陈琦丽, 唐超群 2009 物理化学学报 25 915]

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [29]

    Mowbray D J, Martinez J I, García-Lastra J M, Thygesen K S, Jacobsen K W 2009 J. Phys. Chem. C 113 12301

    [30]

    Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168

    [31]

    Yang K S, Dai Y, Huang B, Whangbo M H 2008 Chem. Mater. 20 6529

    [32]

    Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军 2010 59 1314]

    [33]

    Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102

    [34]

    Yalçn Y, Kılıç M, Çınar Z 2010 Appl. Catal. B: Environ. 99 469

    [35]

    Banisharif A, Khodadadi A A, Mortazavi Y, Firooz A A, Beheshtian J, Agah S, Menbari S 2014 Appl. Catal. B 165 209

    [36]

    Yang Y Q, Zhang R R, Li J B, Lin S W 2014 Nanoscale Res. Lett. 9 46

    [37]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232

  • [1]

    Regonini D, Bowen C R, Jaroenworaluck A 2013 Mater. Sci. Eng. R 74 377

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Bessekhouad Y, Robert D, Weber J V, Chaoui N 2004 J. Phoche. Photobiol. A: Chem. 167 49

    [4]

    Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D

    [5]

    Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F 2012 Nano Lett. 12 1503

    [6]

    Yang D J, Park H, Cho S J, Kim H G, Choi W Y 2008 J. Phys. Chem. Solids 69 1272

    [7]

    Orzali T, Casarin M, Granozzi G, Sambi M, Vittadini A 2006 Phys. Rev. Lett. 971 56101

    [8]

    Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [9]

    Lee W J, Lee J M, Kochuveedu S T, Han T H, Jeong H Y, Park M, Yun J M, Kwon J, No K, Kim D H, Kim S O 2012 ACS Nano 6 935

    [10]

    Tang Z R, Yin X, Zhang Y H, Xu Y J

    [11]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]

    [12]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]

    [13]

    Wang W S, Wang D H, Qu W G, Xu A W 2012 J. Phys. Chem. C 116 19893

    [14]

    Wei M, Liu Y, Gu Z Z, Liu Z D 2011 J. Chin. Chem. Soc. 58 516

    [15]

    Pang Y L, Lim S, Ong H C, Chong W T 2014 Appl. Catal. A 481 127

    [16]

    Hoyer P 1996 Langmuir 12 1411

    [17]

    Xie Q, Meng Q Q, Zhuang G L, Wang J G, Li X N 2012 Int. J. Quantum Chem. 112 2585

    [18]

    Liu H, Lin M H, Tan K 2012 Acta Phys. -Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]

    [19]

    Dong H Q, Pan X, Xie Q, Meng Q Q, Gao J R, Wang J G 2012 Acta Phys. -Chim. Sin. 28 44 (in Chinese) [ 董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国 2012 物理化学学报 28 44]

    [20]

    Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24

    [21]

    Yuan B, Wang Y, Bian H D, Shen T K 2013 Appl. Surf. Sci. 280 523

    [22]

    Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [23]

    Suzuki T M, Kitahara G, Arai T, Matsuoka Y, Morikawa T 2014 Chem. Commun. 50 7614

    [24]

    Li Q, Shang J K 2009 Environ. Sci. Technol. 43 8923

    [25]

    Chen Q L, Tang C Q 2009 Acta Phys. -Chim. Sin. 25 915 (in Chinese) [陈琦丽, 唐超群 2009 物理化学学报 25 915]

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [29]

    Mowbray D J, Martinez J I, García-Lastra J M, Thygesen K S, Jacobsen K W 2009 J. Phys. Chem. C 113 12301

    [30]

    Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168

    [31]

    Yang K S, Dai Y, Huang B, Whangbo M H 2008 Chem. Mater. 20 6529

    [32]

    Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军 2010 59 1314]

    [33]

    Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102

    [34]

    Yalçn Y, Kılıç M, Çınar Z 2010 Appl. Catal. B: Environ. 99 469

    [35]

    Banisharif A, Khodadadi A A, Mortazavi Y, Firooz A A, Beheshtian J, Agah S, Menbari S 2014 Appl. Catal. B 165 209

    [36]

    Yang Y Q, Zhang R R, Li J B, Lin S W 2014 Nanoscale Res. Lett. 9 46

    [37]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232

  • [1] Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan. First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Physica Sinica, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] Cheng Li, Wang De-Xing, Zhang Yang, Su Li-Ping, Chen Shu-Yan, Wang Xiao-Feng, Sun Peng, Yi Chong-Gui. Electronic structure and optical properties of Cu-O co-doped AlN. Acta Physica Sinica, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [4] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [5] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [6] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [7] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [8] Song Jiu-Xu, Yang Yin-Tang, Guo Li-Xin, Wang Ping, Zhang Zhi-Yong. Investigation on influence of antisite defects on electronic structure and optical properties of silicon carbide nanotube. Acta Physica Sinica, 2012, 61(23): 237301. doi: 10.7498/aps.61.237301
    [9] Li Chun-Xia, Dang Sui-Hu. Doped with Ag and Zn effects on electronic structure and optical properties of CdS. Acta Physica Sinica, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [10] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [12] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] Hu Zhi-Gang, Duan Man-Yi, Xu Ming, Zhou Xun, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [15] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [17] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] Qian Lei, Teng Feng, Xu Zheng, Quan Shan-Yu, Liu De-Ang, Wang Yuan-Min, Wang Yong-Sheng, Xu Xu-Rong. Influence of doping with titania nanotubes on performance of polymer light-emitting diodes. Acta Physica Sinica, 2006, 55(2): 929-934. doi: 10.7498/aps.55.929
Metrics
  • Abstract views:  7741
  • PDF Downloads:  429
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2015
  • Accepted Date:  03 March 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map