-
Copper/carbon core/shell structure nanoparticles and nanowires are successfully synthesized by using a one-step low-temperature metal-organic chemical vapor with copper (II) acetylacetonate powders as precursor. Morphology and structure of copper/carbon core/shell nanomaterial can be well controlled by deposition temperature For instance, copper/carbon core/shell nanowires about 200 nm in diameter can be produced at 400 ℃. The mixture of nanowires and nanoparticles can be produced at 450 ℃. At 600 ℃ the production is the copper/carbon core/shell nanoparticles about 22 nm in diameter. The obtained copper/carbon core/shell nanostucture is found to be formed by a novel coalescence mechanism that is quite different from the well-known dissolution-precipitation mechanism The optical property of copper/carbon core/shell nanostructure is investigated Uv-vis spectrometer and the fluorescence spectrometer (PL). The results show that the surface plasma resonance peaks of copper/carbon core/shell nanowire and nanoparticle are located at 620 nm and 616 nm respectively. At 225 nm, copper absorbing peak can be found. The PL peaks of copper/carbon core/shell nanowires are located at 312 nm and 348 nm, and the PL peaks of copper/carbon core/shell nanoparticles are observed at 304 nm and 345 nm.
-
Keywords:
- copper/carbon core/shell structure /
- nanowires /
- nanoparticles /
- optical properties
[1] Lu L, Chen X, Huang X, Lu K 2009 Science 323 607
[2] Zhang H L, Lei H L, Tang Y J, Luo J S, Li K, Deng X C 2010 Acta Phys. Sin. 59 471 (in Chinese) [张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣 2010 59 471]
[3] Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926
[4] Wang G C, Yuan J M 2005 Acta Phys. Sin. 52 970 (in Chinese) [王贵春, 袁建民2005 52 970]
[5] Rathmell A R, Wiley B J 2011 Adv. Mater. 23 4798
[6] Huaman J L C, Sato K, Kurita S, Matsumoto T, Jeyadevan B 2011 J. Mat. Chem. 21 7062
[7] Zhang B S, Xu B S, Xu Y, Gao F, Shi P J, Wu Y X 2011 Tribol. Int. 44 878
[8] Wang S L, Huang X L, He Y H, Huang H, Wu Y Q, Hou L Z, Liu X L, Yang T M, Zou J Huang B Y 2012 Carbon 50 2119
[9] Wang S L, He Y H, Liu X L, Huang H, Zou J, Song M, Huang B Y, Liu C T 2011 Nanotechnology 22 405704
[10] Luechinger N A, Athanassiou E K, Stark W J 2008 Nanotechnology 19 445201
[11] Xu W, Zhang Y, Guo Z, Chen X, Liu J, Huang X, Yu S H 2012 Small 8 53
[12] Athanassiou E K, Grass R N, Stark W J 2006 Nanotechnology 17 1668
[13] Yen M Y, Chiu C W, Hsia C H, Chen F R, Kai J J, Lee C Y, Chiu H T 2003 Adv. Mater. 15 235
[14] Chen X H, Wu G T, Deng F M, Wang J X, Yang H S, Wang M, Lu X N, Peng J C, Li W Z 2001 Acta Phys. Sin. 50 1264 (in Chinese) [陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸2001 50 1264]
[15] Zhang X F, Dong X L, Huang H, Wang D K, Lü B, Lei J 2007 Nanotechnology 18 275701
[16] Li H, Kang W, Xi B, Yan Y, Bi H, Zhu Y, Qian Y 2010 Carbon 48 464
[17] Schaper A K, Hou H, Greiner A, Schneider R, Phillipp F 2004 Appl. Phys. A: Mater. Sci. Process. 78 73
[18] Vertoprakhov V N, Krupoder S A 2000 Russ. Chem. Rev. 69 1057
[19] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312
[20] Khatouri J, Mostafavi M, Amblard J, Belloni J 1992 Chem. Phys. Lett. 191 351
[21] Lisiecki I, Pileni M P 1993 J. Am. Chem. Soc. 115 3887
[22] Mulvaney P 1996 Langmuir 12 788
[23] Siwach O P, Sen P 2008 J. Nanopart. Res. 10 107
[24] O'connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C 2002 Science 297 593
[25] Huang T, Murray R W 2001 J. Phys. Chem. B 105 12498
[26] Garuthara R, Siripala W 2006 J. Lumin. 121 173
-
[1] Lu L, Chen X, Huang X, Lu K 2009 Science 323 607
[2] Zhang H L, Lei H L, Tang Y J, Luo J S, Li K, Deng X C 2010 Acta Phys. Sin. 59 471 (in Chinese) [张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣 2010 59 471]
[3] Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926
[4] Wang G C, Yuan J M 2005 Acta Phys. Sin. 52 970 (in Chinese) [王贵春, 袁建民2005 52 970]
[5] Rathmell A R, Wiley B J 2011 Adv. Mater. 23 4798
[6] Huaman J L C, Sato K, Kurita S, Matsumoto T, Jeyadevan B 2011 J. Mat. Chem. 21 7062
[7] Zhang B S, Xu B S, Xu Y, Gao F, Shi P J, Wu Y X 2011 Tribol. Int. 44 878
[8] Wang S L, Huang X L, He Y H, Huang H, Wu Y Q, Hou L Z, Liu X L, Yang T M, Zou J Huang B Y 2012 Carbon 50 2119
[9] Wang S L, He Y H, Liu X L, Huang H, Zou J, Song M, Huang B Y, Liu C T 2011 Nanotechnology 22 405704
[10] Luechinger N A, Athanassiou E K, Stark W J 2008 Nanotechnology 19 445201
[11] Xu W, Zhang Y, Guo Z, Chen X, Liu J, Huang X, Yu S H 2012 Small 8 53
[12] Athanassiou E K, Grass R N, Stark W J 2006 Nanotechnology 17 1668
[13] Yen M Y, Chiu C W, Hsia C H, Chen F R, Kai J J, Lee C Y, Chiu H T 2003 Adv. Mater. 15 235
[14] Chen X H, Wu G T, Deng F M, Wang J X, Yang H S, Wang M, Lu X N, Peng J C, Li W Z 2001 Acta Phys. Sin. 50 1264 (in Chinese) [陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸2001 50 1264]
[15] Zhang X F, Dong X L, Huang H, Wang D K, Lü B, Lei J 2007 Nanotechnology 18 275701
[16] Li H, Kang W, Xi B, Yan Y, Bi H, Zhu Y, Qian Y 2010 Carbon 48 464
[17] Schaper A K, Hou H, Greiner A, Schneider R, Phillipp F 2004 Appl. Phys. A: Mater. Sci. Process. 78 73
[18] Vertoprakhov V N, Krupoder S A 2000 Russ. Chem. Rev. 69 1057
[19] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312
[20] Khatouri J, Mostafavi M, Amblard J, Belloni J 1992 Chem. Phys. Lett. 191 351
[21] Lisiecki I, Pileni M P 1993 J. Am. Chem. Soc. 115 3887
[22] Mulvaney P 1996 Langmuir 12 788
[23] Siwach O P, Sen P 2008 J. Nanopart. Res. 10 107
[24] O'connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C 2002 Science 297 593
[25] Huang T, Murray R W 2001 J. Phys. Chem. B 105 12498
[26] Garuthara R, Siripala W 2006 J. Lumin. 121 173
Catalog
Metrics
- Abstract views: 6599
- PDF Downloads: 935
- Cited By: 0