-
Carbon nanotube (CNT) fiber is a promising material due to its extensive potential in micro/nanoelectronics, where the thermal performance is of great importance. In this work, a well-developed steady-state electro-Raman-thermal technique is employed and extended to the ambient environment for measuring thermal conductivity of the CNTs fiber. In this technique, two ends of the CNT fiber are attached to heat sinks and a steady electrical current flows in a sample to induce Joule heating. The heat dissipates to the ambient air and goes through the sample to the heat sinks. With combined effects of natural heat convection and heat conduction, a steady temperature profile along the sample can be established. The middle point temperature of the fiber is probed by measuring the local Raman spectrum. It is because the Raman scattering (such as G peak) of CNT fiber is temperature dependent and thus it can be used as a temperature indicator for thermal property measurement. In calibration experiment, the temperature coefficient of the G peak of CNT fiber is first obtained. A modified one-dimensional heat conduction solution involving free convection effect is derived as #br#T(x) =((I2R)/(hLS))(1 -(e√(hS)/(kAc)x)+e-√(hS)/((kAc)x)/(e√(hS)/(kAc)L/2)+e-√(hS)/(kAc)L/2))+ T0. It can be found that the relationship between middle point temperature (T0) and applied Joule heating power (I2R) can be used to extract the thermal conductivity of the material (k) as long as the convection coefficient (h) is available. In this work, the convection coefficient is calculated by the model established by Peirs et al. The thermal conductivity of CNT fiber synthesized from floating catalyst method is measured to be 66.93 W/(m·K)± 11.49 W/(m·K). This value is a little bit larger than that of other CNT fibers synthesized by the acid spun method or the dry-spinning method, which can be explained by the different sample structures induced from different synthesize method. This value is two orders of magnitude smaller than that of individual carbon nanotube, and two orders of magnitude larger than that of CNTs packed bed, showing that heat conduction in CNT based bulk material is determined mainly by a large number of thermal interfaces between CNTs contacts rather than the intrinsic thermal property of CNT.
-
Keywords:
- Raman scattering /
- carbon nanotube fiber /
- thermal conductivity /
- interfacial thermal resistance
[1] Iijima S 1991 Nature 354 56
[2] Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787
[3] Meng F C, Zhou Z P, Li Q W 2010 Mater. Rev. 24 38 (in Chinese) [孟凡成, 周振平, 李清文 2010 材料导报 24 38]
[4] Ericson L M, Fan H, Peng H, Davis V A, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C 2004 Science 305 1447
[5] Dalton A B, Collins S, Munoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H 2003 Nature 423 703
[6] Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A 2007 Science 318 1892
[7] Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96
[8] Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501
[9] Feng Y, Zhu J, Tang D W 2014 Chin. Phys. B 23 083101
[10] Aliev A E, Guthy C, Zhang M, Fang S, Zakhidov A A, Fischer J E, Baughman R H 2007 Carbon 45 2880
[11] Wang Z L, Tang D W, Zheng X H, Bu W F, Zhang W G 2007 J. Eng. Thermophys. 28 490 (in Chinese) [王照亮, 唐大伟, 郑兴华, 布文峰, 张伟刚 2007 工程热 28 490]
[12] Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2005 Appl. Phys. Lett. 87 013108
[13] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881
[14] Li Q, Liu C, Wang X, Fan S 2009 Nanotechnology 20 145702
[15] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
[16] Doerk G S, Carraro C, Maboudian R 2010 ACS Nano 4 4908
[17] Yue Y, Eres G, Wang X, Guo L 2009 Appl. Phys. A 97 19
[18] Yue Y, Zhang J, Wang X 2011 Small 7 3324
[19] Raravikar N R, Keblinski P, Rao A M, Dresselhaus M S, Schadler L S, Ajayan P M 2002 Phys. Rev. B 66 235424
[20] Calizo I, Balandin A, Bao W, Miao F, Lau C 2007 Nano Lett. 7 2645
[21] Bassil A, Puech P, Tubery L, Bacsa W, Flahaut E 2006 Appl. Phys. Lett. 88 173113
[22] Peirs J, Reynaerts D, van Brussel H 1998 Proceeding of the 1998 IEEE International Conference on Robotics and Automation Leuven, Belgium, May 20-20, 1998 p1516
[23] Churchill S W, Chu H H S 1975 Int. J. Heat Mass Transfer 18 1049
[24] Guan N, Liu Z, Zhang C, Jiang G 2014 Heat Mass Transfer 50 275
[25] Wang Z L, Liang J G, Tang D W 2012 J. Eng. Thermophys. 33 670 (in Chinese) [王照亮, 梁金国, 唐大伟 2012 工程热 33 670]
[26] Prasher R S, Hu X J, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P 2009 Phys. Rev. Lett. 102 105901
[27] Yang J, Shen M, Yang Y, Evans W J, Wei Z, Chen W, Zinn A A, Chen Y, Prasher R, Xu T T, Keblinski P, Li D 2014 Phys. Rev. Lett. 112 205901
-
[1] Iijima S 1991 Nature 354 56
[2] Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787
[3] Meng F C, Zhou Z P, Li Q W 2010 Mater. Rev. 24 38 (in Chinese) [孟凡成, 周振平, 李清文 2010 材料导报 24 38]
[4] Ericson L M, Fan H, Peng H, Davis V A, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C 2004 Science 305 1447
[5] Dalton A B, Collins S, Munoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H 2003 Nature 423 703
[6] Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A 2007 Science 318 1892
[7] Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96
[8] Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501
[9] Feng Y, Zhu J, Tang D W 2014 Chin. Phys. B 23 083101
[10] Aliev A E, Guthy C, Zhang M, Fang S, Zakhidov A A, Fischer J E, Baughman R H 2007 Carbon 45 2880
[11] Wang Z L, Tang D W, Zheng X H, Bu W F, Zhang W G 2007 J. Eng. Thermophys. 28 490 (in Chinese) [王照亮, 唐大伟, 郑兴华, 布文峰, 张伟刚 2007 工程热 28 490]
[12] Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2005 Appl. Phys. Lett. 87 013108
[13] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881
[14] Li Q, Liu C, Wang X, Fan S 2009 Nanotechnology 20 145702
[15] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
[16] Doerk G S, Carraro C, Maboudian R 2010 ACS Nano 4 4908
[17] Yue Y, Eres G, Wang X, Guo L 2009 Appl. Phys. A 97 19
[18] Yue Y, Zhang J, Wang X 2011 Small 7 3324
[19] Raravikar N R, Keblinski P, Rao A M, Dresselhaus M S, Schadler L S, Ajayan P M 2002 Phys. Rev. B 66 235424
[20] Calizo I, Balandin A, Bao W, Miao F, Lau C 2007 Nano Lett. 7 2645
[21] Bassil A, Puech P, Tubery L, Bacsa W, Flahaut E 2006 Appl. Phys. Lett. 88 173113
[22] Peirs J, Reynaerts D, van Brussel H 1998 Proceeding of the 1998 IEEE International Conference on Robotics and Automation Leuven, Belgium, May 20-20, 1998 p1516
[23] Churchill S W, Chu H H S 1975 Int. J. Heat Mass Transfer 18 1049
[24] Guan N, Liu Z, Zhang C, Jiang G 2014 Heat Mass Transfer 50 275
[25] Wang Z L, Liang J G, Tang D W 2012 J. Eng. Thermophys. 33 670 (in Chinese) [王照亮, 梁金国, 唐大伟 2012 工程热 33 670]
[26] Prasher R S, Hu X J, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P 2009 Phys. Rev. Lett. 102 105901
[27] Yang J, Shen M, Yang Y, Evans W J, Wei Z, Chen W, Zinn A A, Chen Y, Prasher R, Xu T T, Keblinski P, Li D 2014 Phys. Rev. Lett. 112 205901
Catalog
Metrics
- Abstract views: 7654
- PDF Downloads: 377
- Cited By: 0