Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures and second hyperpolarizabilities of annulenes derivatives

Chen Ying-Ying Han Kui Li Hai-Peng Li Ming-Xue Tang Gang Shen Xiao-Peng

Citation:

Electronic structures and second hyperpolarizabilities of annulenes derivatives

Chen Ying-Ying, Han Kui, Li Hai-Peng, Li Ming-Xue, Tang Gang, Shen Xiao-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Organic nonlinear optical materials have attracted considerable attention in recent years because of their potential applications in photonic devices and optical information processing. Recent studies have shown that annulene derivatives exhibit good second-order nonlinear optical properties, but their third-order nonlinear optical properties are studied little. In this paper, the values of molecular static linear polarizability α and second hyperpolarizability γ of substituted annulenes have been investigated with different levels of HF, B3LYP, BHandHLYP and CAM-B3LYP at different basis sets, respectively. Their ultraviolet spectra have also been calculated by using the TD-B3LYP method. It is found that the quality of the basis set is important for the hyperpolarizability calculations, and diffuse functions are important to obtain accurate results for the second hyperpolarizability. We also study the structure-optical property relationship for annulene. It is found that annulene molecular structure has a significant influence on third-order nonlinear optical response. Increasing the conjugation length and introducing push-pull electronic groups can enhance the second hyperpolarizability. But the introduction of push-pull electronic groups can enhance the hyperpolarizability more remarkably than increasing the conjugation length dose, which may be due to the fact that the introduction of push-pull electronic groups can provide a large number of polarizable electrons whereas increasing the conjugation length can only enhance the electron delocalization. Meanwhile the push-pull electronic group substituted annulenes can also exhibit high transparency in visible region. Thus, this work has a good reference for designing nonlinear optical material with high, nonlinear optical coefficient and good transparency. In addition, for the same push-pull electronic groups, the higher conjugation degree and the longer πup -conjugated bridge result in the decrease of HOMO-LUMO energy gap and transition energy which benefits the enhancement of nonlinear optical response. Our results demonstrate that annulene derivative shows both high transparency and large second hyperpolarizability, and thus becomes a promising candidate for third-order nonlinear optical material. In addition, the dynamic (hyper) polarizabilities of considered annulene molecules are calculated by using CAM-B3LYP method. It is found that in near-infrared region, with the increase of frequency of incident light, α (ω; ω), γ (-ω; ω, 0, 0) and γ (-2ω; ω, ω, 0) are all increased, and the near-resonance enhancement effect occurs. Under the condition of far resonance, α (ω; ω), γ (-ω; ω, 0, 0) and γ (-2ω; ω, ω, 0) change little. This dispersion effect may be helpful for the experimental study and applications as well.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372048, 11347123) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2013XK04).
    [1]

    Ye C, Zyss J 1996 Theory and Practice of Nonlinear Optical Molecules (Beijing: Chemical Industry Press) pp1-3 (in Chinaese) [叶成, 习斯 J 1996 分子非线性光学的理论与实践 (北京: 化学工业出版社) 第1-3页]

    [2]

    Zhu J, L C G, Hong X S, Cui Y P 2010 Acta Phys. Sin. 59 2850 (in Chinese) [朱菁, 吕昌贵, 洪旭升, 崔一平 2010 59 2850]

    [3]

    Wang Y D, Meng Y, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [4]

    Manjunatha K B, Dileep R, Umesh G, Satyanarayan M N, Ramachandra B B 2014 Opt. Mater. 36 1054

    [5]

    Woodford J N, Wang C H, Asato A E, Liu R S 1999 J. Chem. Phys. 111 4621

    [6]

    Takimoto Y, Otani M, Sugino O 2010 Phys. Rev. B 81 153405

    [7]

    Li H P, Han K, Wang Q 2004 Acta Phys. -Chim. Sin. 20 806 (in Chinese) [李海鹏, 韩奎, 王群 2004 物理化学学报 20 806]

    [8]

    Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Brédas J, Perry J W, Marder S R 2010 Science 327 1485

    [9]

    Scarpaci A, Nantalaksakul A, Hales J M, Matichak J D, Barlow S, Rumi M, Perry J W, Marder S R 2012 Chem. Mater. 24 1606

    [10]

    Li H P, Shen X P, Han K, Tang G, Zhang Z H 2013 Comput. Theor. Chem. 1023 95

    [11]

    Xiang H, Tian Z Y, Wang S F, Wang Z W, Li Z, Yang H, Yao J N, Gong Q H 2008 Chin. Phys. B 17 2535

    [12]

    Wu W, Li C, Yu G, Liu Y, Ye C, Qin J, Li Z 2012 Chem. Eur. J. 18 11019

    [13]

    Liu Z Y 2007 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [刘泽玉 2007 博士学位论文(南京: 南京大学)]

    [14]

    Li M X, Han K, Li H P, Huang Z M, Zhong Q, Tong X, Wu Q H 2010 Acta Phys. Sin. 59 1809 (in Chinese) [李明雪, 韩奎, 李海鹏, 黄志敏, 钟琪, 童星, 吴琼华 2010 59 1809]

    [15]

    Wang J Y, Zhou J, Chen D L, Jian P M, Zhang G L 2000 Chem. J. Chin. Univ. 21 3703 (in Chinese) [王进义, 周晶, 程东亮, 菅盘铭, 张国林 2000 高等学校化学学报 21 3703]

    [16]

    Lu J, Yang B Q, Bai Y J 2002 Synthetic Commun. 32 3703

    [17]

    Islam M M, Bhuiyan M D H, Bredow T, Try A C 2011 Comput. Theor. Chem. 967 165

    [18]

    Pang H W 2014 Gong Dong Chem. Ind. 41 13 (in Chinese) [庞宏伟 2014 广东化工 41 13]

    [19]

    Ge Y, Han K, Zhou F, Ju F L 2012 J. At. Mol. Phys. 291 1 (in Chinese) [葛阳, 韩奎, 周菲, 居发亮 2012 原子与分子 291 1]

    [20]

    Medved M, Champagne B, Noga I, Perpece E A 2004 J. Comput. Meth. Sci. Eng. 4 251

    [21]

    Panja N, Ghanty T K, Nandle P K 2010 Theor. Chem. Acc 126 323

    [22]

    Yanai T, Tew P D, Handy N C 2004 Chem. Phys. Lett. 393 51

    [23]

    Sun T, Wang Y B 2011 Acta Phys. -Chim. Sin. 27 2553 (in Chinese) [孙涛, 王一波 2011 物理化学学报 27 2553]

    [24]

    Li Y D, Li Z L, Leng J C, Li W, Wang C K 2011 Acta Phys. Sin. 60 073101 (in Chinese) [李英德, 李宗良, 冷建材, 李伟, 王传奎 2011 60 073101]

    [25]

    Wang C K, Wang Y H, Su Y, Lou Y 2003 J. Chem. Phys. 119 4409

    [26]

    Zhang C Z, Lu C, Zhu J, Wang C Y, Lu G Y, Wang C S, Wu D L, Liu F, Cui Y P 2008 Chem. Mater. 20 4628

    [27]

    Han K, Li H P, Wu Y X, Tang G, Li M X, Zhong Q, Huang Z M 2009 J. Mol. Struct.: Theochem 908 69

    [28]

    Maroulis G 2008 J. Chem. Phys. 129 044314

    [29]

    Marcano E, Squitieri E, Murgich J, Soscún H 2012 Comput. Theor. Chem. 985 72

    [30]

    Li H P, Han K, Shen X P, Lu Z P, Huang Z M, Wang H T, Zhang Z H, Bai L 2006 J. Mol. Struct. (Theochem.) 767 113

  • [1]

    Ye C, Zyss J 1996 Theory and Practice of Nonlinear Optical Molecules (Beijing: Chemical Industry Press) pp1-3 (in Chinaese) [叶成, 习斯 J 1996 分子非线性光学的理论与实践 (北京: 化学工业出版社) 第1-3页]

    [2]

    Zhu J, L C G, Hong X S, Cui Y P 2010 Acta Phys. Sin. 59 2850 (in Chinese) [朱菁, 吕昌贵, 洪旭升, 崔一平 2010 59 2850]

    [3]

    Wang Y D, Meng Y, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [4]

    Manjunatha K B, Dileep R, Umesh G, Satyanarayan M N, Ramachandra B B 2014 Opt. Mater. 36 1054

    [5]

    Woodford J N, Wang C H, Asato A E, Liu R S 1999 J. Chem. Phys. 111 4621

    [6]

    Takimoto Y, Otani M, Sugino O 2010 Phys. Rev. B 81 153405

    [7]

    Li H P, Han K, Wang Q 2004 Acta Phys. -Chim. Sin. 20 806 (in Chinese) [李海鹏, 韩奎, 王群 2004 物理化学学报 20 806]

    [8]

    Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Brédas J, Perry J W, Marder S R 2010 Science 327 1485

    [9]

    Scarpaci A, Nantalaksakul A, Hales J M, Matichak J D, Barlow S, Rumi M, Perry J W, Marder S R 2012 Chem. Mater. 24 1606

    [10]

    Li H P, Shen X P, Han K, Tang G, Zhang Z H 2013 Comput. Theor. Chem. 1023 95

    [11]

    Xiang H, Tian Z Y, Wang S F, Wang Z W, Li Z, Yang H, Yao J N, Gong Q H 2008 Chin. Phys. B 17 2535

    [12]

    Wu W, Li C, Yu G, Liu Y, Ye C, Qin J, Li Z 2012 Chem. Eur. J. 18 11019

    [13]

    Liu Z Y 2007 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [刘泽玉 2007 博士学位论文(南京: 南京大学)]

    [14]

    Li M X, Han K, Li H P, Huang Z M, Zhong Q, Tong X, Wu Q H 2010 Acta Phys. Sin. 59 1809 (in Chinese) [李明雪, 韩奎, 李海鹏, 黄志敏, 钟琪, 童星, 吴琼华 2010 59 1809]

    [15]

    Wang J Y, Zhou J, Chen D L, Jian P M, Zhang G L 2000 Chem. J. Chin. Univ. 21 3703 (in Chinese) [王进义, 周晶, 程东亮, 菅盘铭, 张国林 2000 高等学校化学学报 21 3703]

    [16]

    Lu J, Yang B Q, Bai Y J 2002 Synthetic Commun. 32 3703

    [17]

    Islam M M, Bhuiyan M D H, Bredow T, Try A C 2011 Comput. Theor. Chem. 967 165

    [18]

    Pang H W 2014 Gong Dong Chem. Ind. 41 13 (in Chinese) [庞宏伟 2014 广东化工 41 13]

    [19]

    Ge Y, Han K, Zhou F, Ju F L 2012 J. At. Mol. Phys. 291 1 (in Chinese) [葛阳, 韩奎, 周菲, 居发亮 2012 原子与分子 291 1]

    [20]

    Medved M, Champagne B, Noga I, Perpece E A 2004 J. Comput. Meth. Sci. Eng. 4 251

    [21]

    Panja N, Ghanty T K, Nandle P K 2010 Theor. Chem. Acc 126 323

    [22]

    Yanai T, Tew P D, Handy N C 2004 Chem. Phys. Lett. 393 51

    [23]

    Sun T, Wang Y B 2011 Acta Phys. -Chim. Sin. 27 2553 (in Chinese) [孙涛, 王一波 2011 物理化学学报 27 2553]

    [24]

    Li Y D, Li Z L, Leng J C, Li W, Wang C K 2011 Acta Phys. Sin. 60 073101 (in Chinese) [李英德, 李宗良, 冷建材, 李伟, 王传奎 2011 60 073101]

    [25]

    Wang C K, Wang Y H, Su Y, Lou Y 2003 J. Chem. Phys. 119 4409

    [26]

    Zhang C Z, Lu C, Zhu J, Wang C Y, Lu G Y, Wang C S, Wu D L, Liu F, Cui Y P 2008 Chem. Mater. 20 4628

    [27]

    Han K, Li H P, Wu Y X, Tang G, Li M X, Zhong Q, Huang Z M 2009 J. Mol. Struct.: Theochem 908 69

    [28]

    Maroulis G 2008 J. Chem. Phys. 129 044314

    [29]

    Marcano E, Squitieri E, Murgich J, Soscún H 2012 Comput. Theor. Chem. 985 72

    [30]

    Li H P, Han K, Shen X P, Lu Z P, Huang Z M, Wang H T, Zhang Z H, Bai L 2006 J. Mol. Struct. (Theochem.) 767 113

  • [1] Liu Zhi-Wei, Zhang Bin, Chen Yu. Two-dimensional nanomaterials and their derivatives for laser protection. Acta Physica Sinica, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [2] Zhao Ke, Song Jun, Zhang Han. Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives. Acta Physica Sinica, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] Tang Chun-Mei, Wang Cheng-Ji, Gao Feng-Zhi, Zhang Yi-Jie, Xu Yan, Gong Jiang-Feng. Calculations of the hydrogen storage of the boron carbon Fullerefle C18B2M(M=Li, Ti, Fe). Acta Physica Sinica, 2015, 64(9): 096103. doi: 10.7498/aps.64.096103
    [4] Wu Na, Yang Jiao, Xiao Fen, Cai Ling-Cang, Tian Chun-Ling. Equation of state of solid krypton from correlated quantum chemistry calculations. Acta Physica Sinica, 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [5] Liu Jun-Hui, Li Guo-Feng, Wang Yuan-Xu. Investigation on three-photon-absorption fitting method and three-photon-absorption-induced optical stabilication effect of a fluorene derivative. Acta Physica Sinica, 2013, 62(1): 017801. doi: 10.7498/aps.62.017801
    [6] Jian Lei, Tan Ying-Xiong, Li Quan, Zhao Ke-Qing. Charge transport properties of truxene derivatives molecules. Acta Physica Sinica, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [7] Han Kui, Li Ming-Xue, Li Hai-Peng, Wu Yu-Xi, Tang Gang, Wu Qiong-Hua, Tong Xing, Zhong Qi. The relationships study of structure-nonlinear optical property of two-dimensional charge transfer molecules substituted annulenes. Acta Physica Sinica, 2010, 59(9): 6250-6255. doi: 10.7498/aps.59.6250
    [8] Tang Chun-Mei, Zhu Wei-Hua, Deng Kai-Ming. Density functional calculations on the structure, bonding and magnetic properties of the transition metal atom doped endohedral fullerene Ni@C20H20. Acta Physica Sinica, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [9] Wang Lei, Hu Hui-Fang, Wei Jian-Wei, Zeng Hui, Yu Ying-Ying, Wang Zhi-Yong, Zhang Li-Juan. Theoretical study on the first hyperpolarizabilities of stilbene derivatives. Acta Physica Sinica, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [10] Zhang Bing, Liu Zhi-Bo, Chen Shu-Qi, Zhou Wen-Yuan, Zang Wei-Ping, Tian Jian-Guo, Luo Dai-Bing, Zhu Zhi-Ang. Reverse saturable absorption of porphyrin-like complexes. Acta Physica Sinica, 2007, 56(9): 5252-5257. doi: 10.7498/aps.56.5252
    [11] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei. Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [12] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [13] Liu Jun-Hui, Mao Yan-Li, Ma Wen-Bo, Wu Yi-Qun, Han Jun-He, Zhai Feng-Xiao. Three-photon-absorption induced fluorescence and optical limiting properties of a new organic compound. Acta Physica Sinica, 2005, 54(11): 5173-5177. doi: 10.7498/aps.54.5173
    [14] Ma Wen-Bo, Wu Yi-Qun, Han Jun-He, Gu Dong-Hong, Gan Fu-Xi. Three-photon absorption properties of two novel fluorene-based derivatives. Acta Physica Sinica, 2005, 54(8): 3698-3702. doi: 10.7498/aps.54.3698
    [15] Zhao Ke, Sun Yuan-Hong, Wang Chuan-Kui, Luo Yi, Zhang Xian, Yu Xiao-Qiang, Jiang Min-Hua. Studies on two-photon absorption cross-sections of 1,4-dimethoxy-2,5-divinyl-benzene derivatives. Acta Physica Sinica, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] ZHANG JIA-MING, LU WEI, SHEN XUE-CHU. QUANTUM CHEMISTRY CALCULATIONS ON THE LATTICE INSTABILITIES OF HEXAHALOMET- ALLATES. Acta Physica Sinica, 1995, 44(11): 1798-1804. doi: 10.7498/aps.44.1798
    [18] XIE FANG-QING, HUANG MING-BAO, XIA YU-XING. A STUDY OF ArCN EXCIPLEX (I)——ROHF CALCULATSONS OF ELECTRONIC STATES. Acta Physica Sinica, 1994, 43(3): 351-355. doi: 10.7498/aps.43.351
    [19] PENG ZHOU-REN, DU QI-SHI, LI BING-RUI. QUANTUM CHEMISTRY STUDY ON BONDING OF DEFECT STATES IN AMORPHOUS CHALCOGENIDE. Acta Physica Sinica, 1985, 34(4): 542-546. doi: 10.7498/aps.34.542
    [20] . Acta Physica Sinica, 1933, 1(1): 38-50. doi: 10.7498/aps.1.38
Metrics
  • Abstract views:  5757
  • PDF Downloads:  222
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2014
  • Accepted Date:  28 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map