Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites

Lin Jia-Qi Li Xiao-Kang Yang Wen-Long Sun Hong-Guo Xie Zhi-Bin Xiu Han-jiang Lei Qing-Quan

Citation:

Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites

Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The polyimide/potassium tantalite niobate (PI/KTa0.5Nb0.5O3) nanoparticle composite model is established by a multi-scale modeling method. The influences of KTa0.5Nb0.5O3 nanoparticles with different sizes (5.5, 8.0, 9.4, 10.5, 11.5 Å) on the structure, elastic modulus and interaction energy of the polyimidebased nanocomposites are investigated by the molecular dynamics simulation. The cell parameters, cohesive energy density, solubility parameter, Young’s modulus and Poisson’s ratio are calculated. Moreover, the bond energy and the number of atoms per unit surface area of the nanoparticles are analyzed to explore the internal mechanism of mechanical property improvement. The results demonstrate that the density of PI matrix is 1.24-1.35 g/cm3, the cohesive energy density of PI matrix is 2.025×108 J/m3, and the solubility parameter of PI matrix is 1.422×104 (J/m3)1/2, which are consist with the actual PI parameters. Meanwhile, the Young’s moduli of the PI and PI/KTa0.5Nb0.5O3 composites are respectively 2.914 GPa and 3.169 GPa, and the Poisson’s ratios are respectively 0.370 and 0.353, which illustrate that the mechanical properties of the PI could be significantly improved by introducing the KTa0.5Nb0.5O3 nanoparticles. At the same pressure, the increases of Young’s modulus with temperature are basically the same without and with doping the KTa0.5Nb0.5O3 nanoparticles into the PI matrix; and when the temperatures are different, the standard deviations of elastic moduli of the PI matrix and PI/KTa0.5Nb0.5O3 composite are almost the same. No matter what the pressures and the temperature are, the Young’s modulus of PI/KTa0.5Nb0.5O3 composite is always larger than that of PI matrix. These all indicate that the effect of KTa0.5Nb0.5O3 nanoparticle on elastic modulus has a similar variation rule under the selected pressure and temperature conditions. In addition, the bond energies of particle surface atoms are 8.62-54.37 kJ·mol-1, which shows that the binding force between particles and the matrix is mainly van der Waals force, and hydrogen bonds exist at the same time. When the doping concentration is fixed, the proportion of nanoparticles surface atoms increases significantly as the size decreases, the interaction between particles and the matrix becomes stronger, the Young’s modulus increases obviously and the size effect is more significant. Therefore, it is confirmed that the doping small size KTa0.5Nb0.5O3 nanoparticles into the polyimide matrix is an effective way to improve the mechanical properties of the composite.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11444004), the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201258), and the Scientific Innovation Talents Research Special Funds for Outstanding Academic Leaders Projects of Harbin City, China (Grant No. 2013RFXXJ068).
    [1]

    Yang S, Cho M 2008 Appl. Phys. Lett. 93 043111

    [2]

    Termonia Y 2010 Polymer 51 4448

    [3]

    Riggleman R A, Toepperwein G, Papakonstantopoulos G J, Barrat J L, de Pablo J J 2009 J. Chem. Phys. 130 244903

    [4]

    Liu J, Wu S, Zhang L, Wang W, Cao D 2011 Phys. Chem. Chem. Phys. 13 518

    [5]

    Buxton G A, Lee J Y, Balazs A C 2003 Macromolecules 36 9631

    [6]

    Rowan C K, Paci I 2011 J. Phys. Chem. C 115 8316

    [7]

    Qiu T, Kong F, Yu X Q, Zhang W J, Lang X Z, Chu P K 2009 Appl. Phys. Lett. 95 213104

    [8]

    Afzal A B, Akhtar M J 2011 Chin. Phys. B 20 058102

    [9]

    Wescott J T, Kung P, Maiti A 2007 Appl. Phys. Lett. 90 033116

    [10]

    Nelson J, Kwiatkowski J J, Kirkpatrick J, Frost J M 2009 Acc. Chem. Res. 42 1768

    [11]

    Athanasopoulos S, Kirkpatrick J, Martinez D, Frost J M, Foden C M, Walker A B, Nelson J 2007 Nano Lett. 7 1785

    [12]

    Buxton G A, Clarke N 2006 Phys. Rev. B 74 085207

    [13]

    Vukmirovic N, Wang L L 2009 Nano Lett. 9 3996

    [14]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 54 3878]

    [15]

    Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]

    [16]

    Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202

    [17]

    Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S 2012 Prog. Polym. Sci. 37 907

    [18]

    Feng B R 1995 Chem. World 10 515 (in Chinese) [冯宝荣 1995 化学世界 10 515]

    [19]

    Li S Z, Wu J H, Zhu X H, Zhang L 2002 New. Chem. Mater. 30 19 (in Chinese) [李生柱, 吴建华, 朱小华, 张亮 2002 化工新型材料 30 19]

    [20]

    Katz M, Theis R J 1997 IEEE Electr. Insul. M. 13 24

    [21]

    Morikawa A, Iyoku Y, Kakimoto M, Imai Y 1992 Polym. J. 24 107

    [22]

    Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J B 2008 Adv. Funct. Mater. 18 1509

    [23]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B 2009 Adv. Mater. 21 2077

    [24]

    Lin J Q, Xie Z B, Yang W L, Zhang P P, Liu Y, Lin H, Li X K 2013 J. Appl. Polym. Sci. 131 39828

    [25]

    Yan L T, Xie X M 2013 Prog. Polym. Sci. 38 369

    [26]

    Choi J, Yu S, Yang S, Cho M 2011 Polymer 52 5197

    [27]

    Choi J, Yang S, Yu S, Shin H, Cho M 2012 Polymer 53 5178

    [28]

    Yang S, Yu S, Ryu J, Cho J M, Kyoung W, Han D S, Cho M 2013 Int. J. Plast. 41 124

    [29]

    Brown D, Marcadon V, Mele P, Alberola N D 2008 Macromolecules 41 1499

    [30]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [31]

    Cho J, Sun C T 2007 Comput. Mater. Sci. 41 54

    [32]

    Odegard G M, Clancy T C, Gates T S 2005 Polymer 46 553

    [33]

    Golzar K, Sepideh A I, Amani M, Modarress H 2014 J. Membr. Sci. 451 117

    [34]

    Sun W F, Wang X 2013 Acta Phys. Sin. 62 186202 (in Chinese) [孙伟峰, 王暄 2013 62 186202]

    [35]

    Lin J Q, Zhang P P, Yang W L, Xie Z B, Liu Y, Lin H, Li X K, Lei Q Q 2013 Polym. Composite 35 969

    [36]

    Parrinello M, Rahman A 1982 J. Chem. Phys. 76 2662

    [37]

    Parrinello M, Rahman A, Vashishta P 1983 Phys. Rev. Lett. 50 1073

    [38]

    Yu S, Yang S, Cho M 2009 Polymer 50 945

    [39]

    Ding M X 2006 Polyimide: chemistry, relationship between structure and properties and materials (Beijing: Science Press) pp528-533 (in Chinese) [丁孟贤 2006 聚酰亚胺-化学, 结构与性能的关系及材料 (北京: 科学出版社) 第528-533页]

    [40]

    Zhu S M, Sun H, Cheng S Y, Yan D Y 2001 Polym. Mater. Sci. Eng. 17 109 (in Chinese) [朱申敏, 孙辉, 程时远, 颜德岳 2001 高分子材料科学与工程 17 109]

    [41]

    Xiang H B, Huang Z, Zhu J, Chen L, Yu J R, Hu Z M 2011 Polym. Mater. Sci. Eng. 27 117 (in Chinese) [向红兵, 黄忠, 诸静, 陈蕾, 于俊荣, 胡祖明 2011 高分子材料科学与工程 27 117]

    [42]

    Wu M S, Zhou Z L 1999 Fiber Comp. 1 37 (in Chinese) [吴妙生, 周祝林 1999 纤维复合材料 1 37]

  • [1]

    Yang S, Cho M 2008 Appl. Phys. Lett. 93 043111

    [2]

    Termonia Y 2010 Polymer 51 4448

    [3]

    Riggleman R A, Toepperwein G, Papakonstantopoulos G J, Barrat J L, de Pablo J J 2009 J. Chem. Phys. 130 244903

    [4]

    Liu J, Wu S, Zhang L, Wang W, Cao D 2011 Phys. Chem. Chem. Phys. 13 518

    [5]

    Buxton G A, Lee J Y, Balazs A C 2003 Macromolecules 36 9631

    [6]

    Rowan C K, Paci I 2011 J. Phys. Chem. C 115 8316

    [7]

    Qiu T, Kong F, Yu X Q, Zhang W J, Lang X Z, Chu P K 2009 Appl. Phys. Lett. 95 213104

    [8]

    Afzal A B, Akhtar M J 2011 Chin. Phys. B 20 058102

    [9]

    Wescott J T, Kung P, Maiti A 2007 Appl. Phys. Lett. 90 033116

    [10]

    Nelson J, Kwiatkowski J J, Kirkpatrick J, Frost J M 2009 Acc. Chem. Res. 42 1768

    [11]

    Athanasopoulos S, Kirkpatrick J, Martinez D, Frost J M, Foden C M, Walker A B, Nelson J 2007 Nano Lett. 7 1785

    [12]

    Buxton G A, Clarke N 2006 Phys. Rev. B 74 085207

    [13]

    Vukmirovic N, Wang L L 2009 Nano Lett. 9 3996

    [14]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 54 3878]

    [15]

    Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]

    [16]

    Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202

    [17]

    Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S 2012 Prog. Polym. Sci. 37 907

    [18]

    Feng B R 1995 Chem. World 10 515 (in Chinese) [冯宝荣 1995 化学世界 10 515]

    [19]

    Li S Z, Wu J H, Zhu X H, Zhang L 2002 New. Chem. Mater. 30 19 (in Chinese) [李生柱, 吴建华, 朱小华, 张亮 2002 化工新型材料 30 19]

    [20]

    Katz M, Theis R J 1997 IEEE Electr. Insul. M. 13 24

    [21]

    Morikawa A, Iyoku Y, Kakimoto M, Imai Y 1992 Polym. J. 24 107

    [22]

    Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J B 2008 Adv. Funct. Mater. 18 1509

    [23]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B 2009 Adv. Mater. 21 2077

    [24]

    Lin J Q, Xie Z B, Yang W L, Zhang P P, Liu Y, Lin H, Li X K 2013 J. Appl. Polym. Sci. 131 39828

    [25]

    Yan L T, Xie X M 2013 Prog. Polym. Sci. 38 369

    [26]

    Choi J, Yu S, Yang S, Cho M 2011 Polymer 52 5197

    [27]

    Choi J, Yang S, Yu S, Shin H, Cho M 2012 Polymer 53 5178

    [28]

    Yang S, Yu S, Ryu J, Cho J M, Kyoung W, Han D S, Cho M 2013 Int. J. Plast. 41 124

    [29]

    Brown D, Marcadon V, Mele P, Alberola N D 2008 Macromolecules 41 1499

    [30]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [31]

    Cho J, Sun C T 2007 Comput. Mater. Sci. 41 54

    [32]

    Odegard G M, Clancy T C, Gates T S 2005 Polymer 46 553

    [33]

    Golzar K, Sepideh A I, Amani M, Modarress H 2014 J. Membr. Sci. 451 117

    [34]

    Sun W F, Wang X 2013 Acta Phys. Sin. 62 186202 (in Chinese) [孙伟峰, 王暄 2013 62 186202]

    [35]

    Lin J Q, Zhang P P, Yang W L, Xie Z B, Liu Y, Lin H, Li X K, Lei Q Q 2013 Polym. Composite 35 969

    [36]

    Parrinello M, Rahman A 1982 J. Chem. Phys. 76 2662

    [37]

    Parrinello M, Rahman A, Vashishta P 1983 Phys. Rev. Lett. 50 1073

    [38]

    Yu S, Yang S, Cho M 2009 Polymer 50 945

    [39]

    Ding M X 2006 Polyimide: chemistry, relationship between structure and properties and materials (Beijing: Science Press) pp528-533 (in Chinese) [丁孟贤 2006 聚酰亚胺-化学, 结构与性能的关系及材料 (北京: 科学出版社) 第528-533页]

    [40]

    Zhu S M, Sun H, Cheng S Y, Yan D Y 2001 Polym. Mater. Sci. Eng. 17 109 (in Chinese) [朱申敏, 孙辉, 程时远, 颜德岳 2001 高分子材料科学与工程 17 109]

    [41]

    Xiang H B, Huang Z, Zhu J, Chen L, Yu J R, Hu Z M 2011 Polym. Mater. Sci. Eng. 27 117 (in Chinese) [向红兵, 黄忠, 诸静, 陈蕾, 于俊荣, 胡祖明 2011 高分子材料科学与工程 27 117]

    [42]

    Wu M S, Zhou Z L 1999 Fiber Comp. 1 37 (in Chinese) [吴妙生, 周祝林 1999 纤维复合材料 1 37]

  • [1] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] Zha Jun-Wei, Wang Fan. Research progress of high thermal conductivity polyimide dielectric films. Acta Physica Sinica, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [4] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [5] Huang Duo-Hui, Wan Ming-Jie, Yang Jun-Sheng. Mmolecular dynamics study of glass transition and nonlinear mechanical behavior of poly(methyl methacrylate)/carbon nanotubes nanocomposites. Acta Physica Sinica, 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [6] Liu Jing, Zhang Hai-Bo. Charging characteristics and micromechanism of space electrons irradiated polymers. Acta Physica Sinica, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [7] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [8] Hou Kun, Zhang Zhan-Wen, Huang Yong, Wei Jian-Jun. Characterization and properties of polyimide films prepared in different monomer ratios by vapor deposited polymerization. Acta Physica Sinica, 2016, 65(3): 035203. doi: 10.7498/aps.65.035203
    [9] Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong. Study on temperature and electric field dependence of conductivity in polyimide. Acta Physica Sinica, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [10] Weng Ming, Hu Tian-Cun, Cao Meng, Xu Wei-Jun. Effects of electron incident angle on the secondary electron yield for polyimide. Acta Physica Sinica, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [11] Liu Jing, Zhang Hai-Bo. Steadystate charging characteristics of polymer irradiated by multi-energetic electrons. Acta Physica Sinica, 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [12] Si Li-Na, Wang Xiao-Li. A molecular dynamics study on adhesive contact processes of surfaces with nanogrooves. Acta Physica Sinica, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [13] Chen Qing, Sun Min-Hua. Molecular dynamics simulation of isothermal crystallization dynamics in Cu nanocluster. Acta Physica Sinica, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [14] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [15] Xia Dong, Wang Xin-Qiang. Structures and melting behaviors of ultrathin platinum nanowires. Acta Physica Sinica, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [16] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [17] Xie Fang, Zhu Ya-Bo, Zhang Zhao-Hui, Zhang Lin. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [18] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] He Lan, Shen Yun-Wen, K. L. Yung, Xu Yan. A new molecular model for main-chain liquid crystalline polymers based on molecular dynamics simulations. Acta Physica Sinica, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
Metrics
  • Abstract views:  7687
  • PDF Downloads:  4485
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2014
  • Accepted Date:  14 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map