搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米线电卡效应的表面应力与固溶改性相场模拟

邹幸 朱哲 方文啸

引用本文:
Citation:

纳米线电卡效应的表面应力与固溶改性相场模拟

邹幸, 朱哲, 方文啸

Simulation of surface stress and solid solution modification phase field of nanowire electrocaloric effect

Zou Xing, Zhu Zhe, Fang Wen-Xiao
PDF
HTML
导出引用
  • 以铁电纳米线为填料的复合薄膜表现出了满足固态制冷需求的高绝热温变, 其平行分布填充的纳米线因和传统垂直分布的取向不同, 被认为是获得大电卡效应的关键因素, 然而其大电卡效应的内在机理尚不十分明确. 因此本文以PbTiO3纳米线为研究对象, 建立平行分布纳米线模型, 通过相场模拟研究表面应力和固溶改性对其电卡效应的影响. 结果表明, 表面应力和固溶改性能够分别调控纳米线相变温度并获取大的绝热温变, 并最终实现了在600 kV/cm电场下, 0—300 ℃的宽温度区间获得大于6 K绝热温变的效果. 同时结合三维畴结构的演变, 揭示了诱发不同畴翻转类型是平行分布纳米线结构获得大电卡效应的内在机理. 通过本研究为基于平行分布铁电纳米线电卡效应的固态制冷技术发展提供了有益的理论指导.
    Composite films with ferroelectric nanowires serving as fillers, exhibit high adiabatic temperature change to meet the requirement for solid-state refrigeration, and their parallel-distributed filled nanowires are considered to be the key factor because their orientation is different from the orientation of the conventional perpendicularly distributed filled nanowires. However, the underlying mechanism of the electrocaloric effect of parallel-distributed nanowires has not been well understood. In this paper, a parallel-distributed PbTiO3 nanowire model is established to investigate the effects of surface stress and solid solution modification on their electrocaloric effects through phase field simulations. The results show that an adiabatic temperature change of 5 K can be obtained near 200 ℃ with 1.5% compressive stress under an electric field of 260 kV/cm. In order to further reduce its operating temperature, the electrocaloric effects of PST nanowires with different Sr contents are calculated, and it is found that the lower the doping amount of Sr, the higher the phase transition temperature of PST nanowires is. When the doping amount of Sr is 0.45, the phase transition temperature of the nanowires can be reduced to near 100 ℃, and an adiabatic temperature change of more than 8 K can be obtained under an electric field of 600 kV/cm. Even in the low-temperature interval from 50 to 100 ℃ the nanowires exhibit an adiabatic temperature change close to 8 K. The nanowires are also characterized by an adiabatic temperature change in a low-temperature interval from 50 to 100 ℃. At the same time, by combining the evolution of the simulated three-dimensional domain structure, it is revealed that the underlying mechanism of the change of the electrocaloric effect under surface stress and solid solution modification is due to different types of domain transformations. Finally, the combinations of components and surface stresses corresponding to the maximum value of the electrocaloric effect at different operating temperatures are discussed and analyzed. The present study provides useful theoretical guidance for developing solid-state refrigeration based on parallel-distributed ferroelectric nanowires.
      通信作者: 朱哲, akzhuzhe@126.com
    • 基金项目: 国家自然科学基金(批准号: 92166111)和湖南省教育厅重点项目(批准号: 21A0121)资助的课题.
      Corresponding author: Zhu Zhe, akzhuzhe@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 92166111) and the Key Program of Hunan Provincial Education Department, China (Grant No. 21A0121).
    [1]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [2]

    Valant M 2012 Prog. Mater. Sci. 57 980Google Scholar

    [3]

    汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国 2022 71 147701Google Scholar

    Tang H, Niu X, Yang Z P, Peng X C, Zhao X B, Yao Y B, Tao T, Liang B, Tang X G, Lu S G 2022 Acta Phys. Sin. 71 147701Google Scholar

    [4]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathu D N, Lu S G, Zhang Q M 2006 Science 311 1270Google Scholar

    [5]

    Kumar A, Kumar R, Singh K 2019 Phys. Status Solidi 216 1800786Google Scholar

    [6]

    白刚, 韩宇航, 高存法 2022 71 097701Google Scholar

    Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar

    [7]

    Ren Y Q, Qi J, Yu H D, Zhang Z, Song R Q, Song W L, Yuan B, Wang T H, Ren W J, Zhang Z D, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [8]

    Zhang G Z, Weng L X, Hu Z Y, Liu Y 2019 Adv. Mater. 31 1806642Google Scholar

    [9]

    Chen Y Q, En Y F, Huang Y, Kong X D, Zheng X J, Lu Y D 2011 Appl. Phys. Lett. 99 203106Google Scholar

    [10]

    Huang H B, Zhang G Z, Ma X Q, Liang D S, Wang J J, Liu Y, Wang Q, Chen L Q 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

    [11]

    Zhu J, Chen H Y, Hou X, Xu L R, Wu H P, Wang J 2019 J. Appl. Phys. 125 234101Google Scholar

    [12]

    Xie B, Zhang H B, Zhang Q, Zang J D, Yang C, Wang Q P, Lia L Y, Jiang S L 2017 J. Mater. Chem. A 5 6070Google Scholar

    [13]

    陶巍, 李鹏飞, 王海山 2011 机电技术 34 85Google Scholar

    Tao W, Li P F, Wang H S 2011 Mechatronic Technology 34 85Google Scholar

    [14]

    仰大勇, 蒋兴宇 2008 合成纤维 37 5Google Scholar

    Yang D Y, Jiang X Y 2008 Synthetic Fibers 37 5Google Scholar

    [15]

    刘迪, 王静, 王俊升 2020 69 127801Google Scholar

    Liu D, Wang J, Wang J S 2020 Acta Phys. Sin. 69 127801Google Scholar

    [16]

    Liu D, Zhao R, Jafri H M, Wang J S, Huang H B 2019 Appl. Phys. Lett. 114 112903Google Scholar

    [17]

    Haun M J, Furman E, Jang S J, Mckinstry H A, Cross L E 1987 J. Appl. Phys. 62 3331Google Scholar

    [18]

    Li Y L, Choudhury S, Haeni J H, et al. 2006 Phys. Rev. B 73 184112Google Scholar

    [19]

    Jain M, Majumder S B, Katiyar R S, Miranda F A, Van Keuls F W 2003 Appl. Phys. Lett. 821911Google Scholar

    [20]

    Zhu J, Chen J X, Chen H Y, Wu H P, Chen S W, Hu P Y 2022 Mech. Adv. Mater. Struc. 29 3763Google Scholar

    [21]

    Wang X Y, Chu R J, Dong Z C, Zhong C G, Huang Y Y, Min Y, Wang M, Zhou P X, Yuan G Q, Wei S N 2015 J. Alloys Compd. 649 261Google Scholar

    [22]

    Hou X, Wu H P, Li H Y, Chen H Y, Wang J 2018 J. Phys. Condens. Matter. 30 465401Google Scholar

    [23]

    Le V L, Hou X, Phan M H, Bui T Q, Wang J, Shimada T, Kitamura T, Dinh V H 2021 J. Phys. D Appl. Phys. 54 255307Google Scholar

    [24]

    Le V L, Vu N L, Ha M T, Bui T Q, Le V T, Nguyen T G, Dinh V H 2020 J. Appl. Phys. 127 214103Google Scholar

  • 图 1  平行分布的纳米线模型

    Fig. 1.  Parallel distribution of nanowires model.

    图 2  纳米线模型的表面应力分布 (a) 纳米线薄膜的堆叠结构; (b)受力分析

    Fig. 2.  Surface stress distribution of nanowires model: (a) Stacked structure of nanowire films; (b) force analysis.

    图 3  260 kV/cm电场作用下, 不同表面应力PTO纳米线的极化(a)和ΔT (b)随温度的变化

    Fig. 3.  Polarization (a) and ΔT (b) versus temperature of PTO nanowires with different surface strains at the electric field of 260 kV/cm

    图 4  不同表面应力下PTO纳米线随温度变化的三维畴结构 (a)—(c) ε = 0; (d)—(f) ε = 1%; (g)—(i) ε = –1%; (j)—(l) ε = –1.5%

    Fig. 4.  Three-dimensional domain structure of PTO nanowires at different surface strains with temperature variation: (a)–(c) ε = 0; (d)–(f) ε = 1%; (g)–(i) ε = –1%; (j)–(l) ε = –1.5%.

    图 5  不同表面应力下PTO纳米线随温度变化的ε11分布 (a)—(c) ε11 = 1%; (d)—(f) ε11 = –1%

    Fig. 5.  ε11 distribution of PTO nanowires at different surface strains with temperature variation: (a)–(c) ε11 = 1%; (d)–(f) ε11 = –1%.

    图 6  在600 kV/cm电场作用下不同Pb/Sr比例纳米线的极化(a)和ΔT (b)随温度变化关系

    Fig. 6.  Polarization (a) and ΔT (b) versus temperature of nanowires with different Pb/Sr ratios at the electric field of 600 kV/cm.

    图 7  不同Pb/Sr比的PST纳米线随温度变化的三维畴结构 (a)—(c) PTO; (d)—(f) Pb0.85Sr0.15TiO3; (g)—(i) Pb0.55Sr0.45TiO3

    Fig. 7.  Three-dimensional domain structure of PST nanowires at different Pb/Sr ratios with temperature variation: (a)–(c) PTO; (d)–(f) Pb0.85Sr0.15TiO3; (g)–(i) Pb0.55Sr0.45TiO3.

    图 8  表面应力下不同Pb/Sr比的纳米线的最大ΔT (a)和工作温度(b)

    Fig. 8.  Maximum ΔT (a) and working temperature (b) of nanowires with different Pb/Sr ratios under surface strain.

    Baidu
  • [1]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [2]

    Valant M 2012 Prog. Mater. Sci. 57 980Google Scholar

    [3]

    汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国 2022 71 147701Google Scholar

    Tang H, Niu X, Yang Z P, Peng X C, Zhao X B, Yao Y B, Tao T, Liang B, Tang X G, Lu S G 2022 Acta Phys. Sin. 71 147701Google Scholar

    [4]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathu D N, Lu S G, Zhang Q M 2006 Science 311 1270Google Scholar

    [5]

    Kumar A, Kumar R, Singh K 2019 Phys. Status Solidi 216 1800786Google Scholar

    [6]

    白刚, 韩宇航, 高存法 2022 71 097701Google Scholar

    Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar

    [7]

    Ren Y Q, Qi J, Yu H D, Zhang Z, Song R Q, Song W L, Yuan B, Wang T H, Ren W J, Zhang Z D, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [8]

    Zhang G Z, Weng L X, Hu Z Y, Liu Y 2019 Adv. Mater. 31 1806642Google Scholar

    [9]

    Chen Y Q, En Y F, Huang Y, Kong X D, Zheng X J, Lu Y D 2011 Appl. Phys. Lett. 99 203106Google Scholar

    [10]

    Huang H B, Zhang G Z, Ma X Q, Liang D S, Wang J J, Liu Y, Wang Q, Chen L Q 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

    [11]

    Zhu J, Chen H Y, Hou X, Xu L R, Wu H P, Wang J 2019 J. Appl. Phys. 125 234101Google Scholar

    [12]

    Xie B, Zhang H B, Zhang Q, Zang J D, Yang C, Wang Q P, Lia L Y, Jiang S L 2017 J. Mater. Chem. A 5 6070Google Scholar

    [13]

    陶巍, 李鹏飞, 王海山 2011 机电技术 34 85Google Scholar

    Tao W, Li P F, Wang H S 2011 Mechatronic Technology 34 85Google Scholar

    [14]

    仰大勇, 蒋兴宇 2008 合成纤维 37 5Google Scholar

    Yang D Y, Jiang X Y 2008 Synthetic Fibers 37 5Google Scholar

    [15]

    刘迪, 王静, 王俊升 2020 69 127801Google Scholar

    Liu D, Wang J, Wang J S 2020 Acta Phys. Sin. 69 127801Google Scholar

    [16]

    Liu D, Zhao R, Jafri H M, Wang J S, Huang H B 2019 Appl. Phys. Lett. 114 112903Google Scholar

    [17]

    Haun M J, Furman E, Jang S J, Mckinstry H A, Cross L E 1987 J. Appl. Phys. 62 3331Google Scholar

    [18]

    Li Y L, Choudhury S, Haeni J H, et al. 2006 Phys. Rev. B 73 184112Google Scholar

    [19]

    Jain M, Majumder S B, Katiyar R S, Miranda F A, Van Keuls F W 2003 Appl. Phys. Lett. 821911Google Scholar

    [20]

    Zhu J, Chen J X, Chen H Y, Wu H P, Chen S W, Hu P Y 2022 Mech. Adv. Mater. Struc. 29 3763Google Scholar

    [21]

    Wang X Y, Chu R J, Dong Z C, Zhong C G, Huang Y Y, Min Y, Wang M, Zhou P X, Yuan G Q, Wei S N 2015 J. Alloys Compd. 649 261Google Scholar

    [22]

    Hou X, Wu H P, Li H Y, Chen H Y, Wang J 2018 J. Phys. Condens. Matter. 30 465401Google Scholar

    [23]

    Le V L, Hou X, Phan M H, Bui T Q, Wang J, Shimada T, Kitamura T, Dinh V H 2021 J. Phys. D Appl. Phys. 54 255307Google Scholar

    [24]

    Le V L, Vu N L, Ha M T, Bui T Q, Le V T, Nguyen T G, Dinh V H 2020 J. Appl. Phys. 127 214103Google Scholar

  • [1] 汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国. 0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响.  , 2022, 71(14): 147701. doi: 10.7498/aps.71.20220280
    [2] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响.  , 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [4] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型.  , 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [5] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能.  , 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [6] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响.  , 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [7] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应.  , 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [8] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究.  , 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [9] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [10] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [11] 赖云锋. 合成参数对气-液-固法低温生长MgO纳米线的影响.  , 2010, 59(12): 8814-8819. doi: 10.7498/aps.59.8814
    [12] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究.  , 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [13] 文玉华, 邵桂芳, 朱梓忠. 金属纳米线应力分布特征的原子级模拟研究.  , 2008, 57(2): 1013-1018. doi: 10.7498/aps.57.1013
    [14] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究.  , 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [15] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究.  , 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [16] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [17] 李 凯, 刘 红, 张青川, 侯 毅, 张广照, 伍小平. 利用微悬臂梁表面应力研究聚N-异丙基丙烯酰胺分子的构象转变.  , 2006, 55(8): 4111-4116. doi: 10.7498/aps.55.4111
    [18] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究.  , 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [20] 何 垚, 车静光. Sb/Si(001)表面的半经验研究.  , 2000, 49(9): 1747-1755. doi: 10.7498/aps.49.1747
计量
  • 文章访问数:  1668
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-02-26
  • 上网日期:  2024-04-03
  • 刊出日期:  2024-05-20

/

返回文章
返回
Baidu
map