-
In this paper, the model of metalic melt shearing flow near the surface is established, and the effect of shearing flow on solidification microstructure of the metal is also analyzed. Calculated results based on A356 alloy melt show that in the laminar flowing melt, the shear stress decreases with increasing length along the vertical direction of the surface of the slope, and the shear stress first decreases rapidly and then stabilizes with increasing length along the flowing direction of the surface of the slope; while in the turbulent flowing melt, the shear stress firstly decreases rapidly and then stabilizes with increasing length along the vertical direction of the surface of the slope, and increases with increasing length along the flowing direction of the surface of the slope. The shear stress at the same position in the melt on the surface of the slope increases with increasing angle of the slope; the shear stress acting on the columnar crystal in the melt on the surface of the slope increases with decreasing length along the vertical direction of the surface of the slope. The shear stress acting on the columnar crystal at the same position in the melt on the surface of the slope increases with increasing angle of the slope; with the increase of the length along the flowing direction, the shear stress acting on the columnar crystal rapidly decreases first and then stabilizes in the laminar flowing melt on the surface of the slope, while the shear stress increases in the turbulently flowing melt on the surface of the slope. Based on the theoretical calculation, the maximum shear stress acting on the columnar crystal in the melt during the shearing flow near the surface of the metalic melt is lower than the yield strength of α-Al grain, so the shear stress induced by shearing flow cannot break the columnar crystal, and only by sweeping the grain into the melt to induce the multiplication of grain, which agrees with the experimental results. So, the proposed model can explain the constitutive relations of the metalic melt shearing flow near the surface and the effect of shear stress on the solidification microstructure.
-
Keywords:
- solidification /
- flowing near surface /
- shear /
- columnar crystal
[1] Yan Z M, Li X T, Cao Z Q, Zhang X L, Li T J 2008 Mater. Lett. 62 4389
[2] Zhang Z T, Li J, Yue H Y, Zhang J, Li T J 2009 J. Alloy Compd. 484 458
[3] Mahapatra R B 1991 Metall. Trans. B22 862
[4] Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z 2002 Mat. Sci. Eng. A 327 133
[5] Li W X, Yu Z, Deng K, Lei Z S, Cheng Z K, Ren Z M 2008 T. Nonferr. Metal Soc. 18 1058
[6] Chen M W, He G W, Chen X Y, Wang Z D 2012 CHin. Phys. B 21 1
[7] Feng L, Wang Z P, Zhu C S, Lu Y 2009 CHin. Phys. B 18 1985
[8] Guan R G, Zhao Z Y, Huang H Q, Lian C, Chao R Z, Liu C M 2012 Acta Phys. Sin. 61 206602 (in Chinese) [管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明 2012 61 206602]
[9] Guan R G, Zhao Z Y, Chao R Z, Zhao H L, Liu C M 2013 T. Nonferr. Metal Soc. 23 73
[10] Haga T, Nakamura R, Tago R, Watari H 2010 T. Nonferr. Metal Soc. 20 968
[11] Haga T, Tkahashi K, Ikawaand M, Tatari H 2004 T. Nonferr. Metal Soc. 153-154 42
[12] Kund N K, Dutta P 2010 T. Nonferr. Metal Soc. 20 898
[13] Behnam A A, Hossein A 2010 J. Mater. Process. Tech. 210 1632
[14] Kapranos P, Liu T Y, Atkinson H V, Kirkwood D H 2001 J. Mater. Process. Tech. 111 31
[15] Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 59 6331]
[16] Shen Y S, Li B W, Wu M L 2000 Basic Principles of Metallurgical Transmission (Beijing:Metallurgical Industry Press) p5-210 (in Chinese) [沈颐身, 李保卫, 吴懋林 2000 冶金传输原理基础(北京:冶金工业出版社)第5-210页]
[17] Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 58 6554]
[18] Dahle A K, Arnberg L 1997 Acta Metall. 45 547
[19] Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q 2003 Acta Metall. Sin. 39 914
-
[1] Yan Z M, Li X T, Cao Z Q, Zhang X L, Li T J 2008 Mater. Lett. 62 4389
[2] Zhang Z T, Li J, Yue H Y, Zhang J, Li T J 2009 J. Alloy Compd. 484 458
[3] Mahapatra R B 1991 Metall. Trans. B22 862
[4] Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z 2002 Mat. Sci. Eng. A 327 133
[5] Li W X, Yu Z, Deng K, Lei Z S, Cheng Z K, Ren Z M 2008 T. Nonferr. Metal Soc. 18 1058
[6] Chen M W, He G W, Chen X Y, Wang Z D 2012 CHin. Phys. B 21 1
[7] Feng L, Wang Z P, Zhu C S, Lu Y 2009 CHin. Phys. B 18 1985
[8] Guan R G, Zhao Z Y, Huang H Q, Lian C, Chao R Z, Liu C M 2012 Acta Phys. Sin. 61 206602 (in Chinese) [管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明 2012 61 206602]
[9] Guan R G, Zhao Z Y, Chao R Z, Zhao H L, Liu C M 2013 T. Nonferr. Metal Soc. 23 73
[10] Haga T, Nakamura R, Tago R, Watari H 2010 T. Nonferr. Metal Soc. 20 968
[11] Haga T, Tkahashi K, Ikawaand M, Tatari H 2004 T. Nonferr. Metal Soc. 153-154 42
[12] Kund N K, Dutta P 2010 T. Nonferr. Metal Soc. 20 898
[13] Behnam A A, Hossein A 2010 J. Mater. Process. Tech. 210 1632
[14] Kapranos P, Liu T Y, Atkinson H V, Kirkwood D H 2001 J. Mater. Process. Tech. 111 31
[15] Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 59 6331]
[16] Shen Y S, Li B W, Wu M L 2000 Basic Principles of Metallurgical Transmission (Beijing:Metallurgical Industry Press) p5-210 (in Chinese) [沈颐身, 李保卫, 吴懋林 2000 冶金传输原理基础(北京:冶金工业出版社)第5-210页]
[17] Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 58 6554]
[18] Dahle A K, Arnberg L 1997 Acta Metall. 45 547
[19] Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q 2003 Acta Metall. Sin. 39 914
Catalog
Metrics
- Abstract views: 5590
- PDF Downloads: 191
- Cited By: 0