Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Observation of colloidal particle deposition during the confined droplet evaporation process

Wu Sai Li Wei-Bin Shi Feng Jiang Shi-Chun Lan Ding Wang Yu-Ren

Citation:

Observation of colloidal particle deposition during the confined droplet evaporation process

Wu Sai, Li Wei-Bin, Shi Feng, Jiang Shi-Chun, Lan Ding, Wang Yu-Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A circular silicone sheet as a masker was used to cover a glass slide, and then the super-hydrophobic coating was sprayed on the glass slide free of silicone sheet masker, thus a round hydrophilic area surrounded by a super-hydrophobic coating is obtained. The PS colloidal droplets are confined in the hydrophilic area, and the droplet volume can be changed within a large range. Variation of the droplet volume influences the initial apparent contact angle. We investigate the particle deposition behavior of the confined colloidal droplet for a hydrophobic apparent contact angle in evaporation process by using an in situ optical observation system. In the whole evaporation process the contact-line of the confined droplet is pinned at the junction between the hydrophilic area and hydrophobic area. In the particle deposition process the main driving flow is different, and the final deposition pattern is controlled by three flow behaviors. In the early stage, the main flow is the Marangoni flow, which drives the particle clusters float on the droplet surfaces, part of them accumulated at the boundaries. As the evaporation proceeds, when the apparent contact angle decreases (<60°), the evaporation flux becomes singular near the contact line, Capillary flow towards the contact inside the drop as a compensation to the solvent loss at the drop boundary, which drives the particles in the droplet to rapidly accumulate at the contact-line. In the last evaporation stage, the thickness of the film in the hydrophilic area becomes very thin, and there is only one layer of particles in this thin film, the thin liquid film instability triggers the particles in the middle area to rapidly aggregate and then form a kind of network pattern, due to the decrease of distances between the particles. Capillary force between particles also takes part in this aggregate process.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202209), and the Strategic Guide Science Special Program of Chinese Academy of Science (A) (Grant Nos. XDA04020202, XDA04020406).
    [1]

    Norris D J, Arlinghaus E G, Meng L, Heiny R, Scriven L 2004 Adv. Mater. 16 1393

    [2]

    Zhang J, Sun Z, Yang B 2009 Curr. Opin. Colloid Interface Sci. 14 103

    [3]

    Pham H H, Gourevich I, Oh J K, Jonkman J E, Kumacheva E 2004 Adv. Mater. 16 516

    [4]

    Velev O D, Kaler E W 2000 Adv. Mater. 12 531

    [5]

    Velev O D, Kaler E W 1999 Langmuir 15 3693

    [6]

    Luo X, Morrin A, Killard A J, Smyth M R 2006 Electroanalysis 18 319

    [7]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2003 Adv. Mater. 15 1025

    [8]

    Fan F, Stebe K J 2004 Langmuir 20 3062

    [9]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2004 Langmuir 20 9114

    [10]

    Reynolds T D, Kalpathy S K, Kumar S, Francis L F 2010 J. Colloid Interface Sci. 352 202

    [11]

    Singh G, Pillai S, Arpanaei A, Kingshott P 2011 Nanotechnology 22 225601

    [12]

    Yu Y X, Jin L 2008 J. Chem. Phys. 128 014901

    [13]

    Yu Y X, You F Q, Tang Y P, Gao G H, Li Y G 2006 J. Phys. Chem. B 110 334

    [14]

    You F Q, Yu Y X, Gao G H 2005 J. Chem. Phys. 123 114705

    [15]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta. Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 62 214207]

    [16]

    Yu Y X, Tian A W, Gao G H 2005 Phys. Chem. Chem. Phys. 7 2423

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [18]

    Deegan R D 2000 Phys. Rev. E 61 475

    [19]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [20]

    Zhang W B, Liao L G, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102 (in Chinese) [张文彬, 廖龙光, 于同旭, 纪爱玲 2013 62 196102]

    [21]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [22]

    Xia Y N, Yin Y D, Lu Y, McLellan J 2003 Adv. Funct. Mater. 13 907

    [23]

    Yin Y D, Lu Y, Gates B, Xia Y N 2001 J. Am. Chem. Soc. 123 8718

    [24]

    Hu H, Larson R G 2005 Langmuir 21 3963

    [25]

    Hu H, Larson R G 2005 Langmuir 21 3972

    [26]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [27]

    Xu X, Luo J 2007 Appl. Phys. Lett. 91 124102

    [28]

    Uno K, Hayashi K, Hayashi T, Ito K, Kitano H 1998 Colloid. Polym. Sci. 276 810

    [29]

    Hu H, Larson R G 2002 J. Phys. Chem. B 106 1334

    [30]

    Guena G, Poulard C, Cazabat A M 2007 Colloid J. 69 1

    [31]

    Nguyen T A H, Hampton M A, Nguyen A V 2013 J. Phys. Chem. C 117 4707

    [32]

    Adachi E, Dimitro A S, Nagayama K 1995 Langmuir 11 1057

    [33]

    Bhardwaj R, Fang X, Attinger D 2009 New J. Chem. 11 075020

    [34]

    Lu K Q, Liu J X 2006 Soft Material Physics Introduction (Beijing: Peking University Press) p250 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论(北京: 北京大学出版社)第250页]

    [35]

    Langmuir I 1912 Phys. Rev. 12 368

    [36]

    Cai Y, Zhang Newby B 2008 J. Am. Chem. Soc. 130 6076

    [37]

    Nikolov A D, Wasan D T 2009 Ind. Eng. Chem. Res. 48 2320

    [38]

    Marín á G, Gelderblom H, Lohse D, Snoeijer J H 2011 Phys. Rev. Lett. 107 085502

    [39]

    Denkov N, Velev O, Kralchevski P, Ivanov I, Yoshimura H, Nagayama K 1992 Langmuir 8 3183

    [40]

    Kralchevsky P A, Denkov N D, Paunov V N, Velev O D, Ivanov I B, Yoshimura H, Nagayama K 1994 J. Phys-condens. Mat. 6 395

  • [1]

    Norris D J, Arlinghaus E G, Meng L, Heiny R, Scriven L 2004 Adv. Mater. 16 1393

    [2]

    Zhang J, Sun Z, Yang B 2009 Curr. Opin. Colloid Interface Sci. 14 103

    [3]

    Pham H H, Gourevich I, Oh J K, Jonkman J E, Kumacheva E 2004 Adv. Mater. 16 516

    [4]

    Velev O D, Kaler E W 2000 Adv. Mater. 12 531

    [5]

    Velev O D, Kaler E W 1999 Langmuir 15 3693

    [6]

    Luo X, Morrin A, Killard A J, Smyth M R 2006 Electroanalysis 18 319

    [7]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2003 Adv. Mater. 15 1025

    [8]

    Fan F, Stebe K J 2004 Langmuir 20 3062

    [9]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2004 Langmuir 20 9114

    [10]

    Reynolds T D, Kalpathy S K, Kumar S, Francis L F 2010 J. Colloid Interface Sci. 352 202

    [11]

    Singh G, Pillai S, Arpanaei A, Kingshott P 2011 Nanotechnology 22 225601

    [12]

    Yu Y X, Jin L 2008 J. Chem. Phys. 128 014901

    [13]

    Yu Y X, You F Q, Tang Y P, Gao G H, Li Y G 2006 J. Phys. Chem. B 110 334

    [14]

    You F Q, Yu Y X, Gao G H 2005 J. Chem. Phys. 123 114705

    [15]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta. Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 62 214207]

    [16]

    Yu Y X, Tian A W, Gao G H 2005 Phys. Chem. Chem. Phys. 7 2423

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [18]

    Deegan R D 2000 Phys. Rev. E 61 475

    [19]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [20]

    Zhang W B, Liao L G, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102 (in Chinese) [张文彬, 廖龙光, 于同旭, 纪爱玲 2013 62 196102]

    [21]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [22]

    Xia Y N, Yin Y D, Lu Y, McLellan J 2003 Adv. Funct. Mater. 13 907

    [23]

    Yin Y D, Lu Y, Gates B, Xia Y N 2001 J. Am. Chem. Soc. 123 8718

    [24]

    Hu H, Larson R G 2005 Langmuir 21 3963

    [25]

    Hu H, Larson R G 2005 Langmuir 21 3972

    [26]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [27]

    Xu X, Luo J 2007 Appl. Phys. Lett. 91 124102

    [28]

    Uno K, Hayashi K, Hayashi T, Ito K, Kitano H 1998 Colloid. Polym. Sci. 276 810

    [29]

    Hu H, Larson R G 2002 J. Phys. Chem. B 106 1334

    [30]

    Guena G, Poulard C, Cazabat A M 2007 Colloid J. 69 1

    [31]

    Nguyen T A H, Hampton M A, Nguyen A V 2013 J. Phys. Chem. C 117 4707

    [32]

    Adachi E, Dimitro A S, Nagayama K 1995 Langmuir 11 1057

    [33]

    Bhardwaj R, Fang X, Attinger D 2009 New J. Chem. 11 075020

    [34]

    Lu K Q, Liu J X 2006 Soft Material Physics Introduction (Beijing: Peking University Press) p250 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论(北京: 北京大学出版社)第250页]

    [35]

    Langmuir I 1912 Phys. Rev. 12 368

    [36]

    Cai Y, Zhang Newby B 2008 J. Am. Chem. Soc. 130 6076

    [37]

    Nikolov A D, Wasan D T 2009 Ind. Eng. Chem. Res. 48 2320

    [38]

    Marín á G, Gelderblom H, Lohse D, Snoeijer J H 2011 Phys. Rev. Lett. 107 085502

    [39]

    Denkov N, Velev O, Kralchevski P, Ivanov I, Yoshimura H, Nagayama K 1992 Langmuir 8 3183

    [40]

    Kralchevsky P A, Denkov N D, Paunov V N, Velev O D, Ivanov I B, Yoshimura H, Nagayama K 1994 J. Phys-condens. Mat. 6 395

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Tang Xiu-Xing, Chen Hong-Yue, Wang Jing-Jing, Wang Zhi-Jun, Zang Du-Yang. Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet. Acta Physica Sinica, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [3] Li Chun-Xi, Ma Cheng, Ye Xue-Min. Thermocapillary migration of thin droplet on wettability-confined track. Acta Physica Sinica, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] Li Feng-Chao, Fu Yu, Li Chao, Yang Jian-Gang, Hu Chun-Bo. Flowing characteristics of aluminum droplets impacting curved surface. Acta Physica Sinica, 2022, 71(18): 184701. doi: 10.7498/aps.71.20220442
    [5] Zhao Wen-Jing, Wang Jin, Qin Wei-Guang, Ji Wen-Jie, Lan Ding, Wang Yu-Ren. Liquid-liquid-driven spreading process based on Marangoni effect. Acta Physica Sinica, 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [6] Li Chun-Xi, Cheng Ran, Ye Xue-Min. Effect of contact angle hysteresis and sensitivity of gas-liquid interfacial tension to temperature of a sessile-drop on evaporation dynamics. Acta Physica Sinica, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [7] Chen Jun, Shen Chao-Qun, Wang He, Zhang Cheng-Bin. Rayleigh-Bénard-Marangoni convection characteristics during mass transfer between liquid layers. Acta Physica Sinica, 2019, 68(7): 074701. doi: 10.7498/aps.68.20181295
    [8] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] Wang Fei, Peng Lan, Zhang Quan-Zhuang, Liu Jia. Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool. Acta Physica Sinica, 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [10] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [11] Li Chun-Xi, Chen Peng-Qiang, Ye Xue-Min. Effect of periodic grooving topography on dynamics of Insoluble surfactant-laden thin film flow. Acta Physica Sinica, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [12] Guo Ya-Li, Wei Lan, Shen Sheng-Qiang, Chen Gui-Ying. The flow and heat transfer characteristics of double droplets impacting on flat liquid film. Acta Physica Sinica, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [13] He Feng, Wang Zhi-Jun, Huang Yi-Hui, Ye Peng, Wang Jin-Cheng. Investigation on the capillary evaporation process based on the existence of liquid film. Acta Physica Sinica, 2013, 62(24): 246401. doi: 10.7498/aps.62.246401
    [14] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [15] Xu Sheng-Hua, Zhou Hong-Wei, Wang Cai-Xia, Wang Lin-Wei, Sun Zhi-Wei. Experimental study on the capillary flow in tubes of different shapes under microgravity condition. Acta Physica Sinica, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [16] Li Yong-Qiang, Zhang Chen-Hui, Liu Ling, Duan Li, Kang Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [17] Li Yong-Qiang, Liu Ling, Zhang Chen-Hui, Duan Li, Kang Qi. Analytical approximations for capillary flow in interior corners of infinite long cylinder under microgravity. Acta Physica Sinica, 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [18] He Bo, He Hao-Bo, Feng Song-Jiang, Nie Wan-Sheng. Model and simulation of liquid rocket organic gel spray droplet evaporation. Acta Physica Sinica, 2012, 61(14): 148201. doi: 10.7498/aps.61.148201
    [19] Du Ren-Jun, Xie Wen-Jun. Evaporation induced solidification of cyclohexane drops under acoustic levitation condition. Acta Physica Sinica, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [20] Ouyang Cheng. Asymptotic estimation for the system of electro-rheological fluids. Acta Physica Sinica, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
Metrics
  • Abstract views:  7396
  • PDF Downloads:  703
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2014
  • Accepted Date:  03 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map