搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声悬浮条件下环己烷液滴的蒸发凝固

杜人君 解文军

引用本文:
Citation:

声悬浮条件下环己烷液滴的蒸发凝固

杜人君, 解文军

Evaporation induced solidification of cyclohexane drops under acoustic levitation condition

Du Ren-Jun, Xie Wen-Jun
PDF
导出引用
  • 采用单轴式声悬浮方法研究了环己烷液滴的蒸发过程,发现环己烷液滴的蒸发可以使自身温度降至熔点以下并发生凝固.高速摄像实时观测表明,环己烷晶核开始形成于液滴赤道附近,并以枝晶方式长大,平均生长速度为12.5160.4 mm/s.进一步研究发现,声悬浮条件下平均Sherwood数与平均Nusselt数的比值Sh/Nu是在自然对流条件下的1.3倍,这表明声流边界层有效提高了环己烷液滴的蒸发速率而对传热的促进作用相对较小,因而可以使液滴降至更低温度,进而发生凝固.据此,提出了挥发性液体在声悬浮条件下发生蒸发凝固的必要条件.
    The evaporation process of a cyclohexane drop is investigated by single-axis acoustic levitation method. It is found that the evaporation of the cyclohexane drop results in the decrease of its temperature below the melting point, and leading to solidification. The real-time observation with a high speed camera shows that the cyclohexane nucleates near the equator of the drop surface and grows dendritically with an average velocity ranging from 12.5 to 160.4 mm/s. Further studies indicate that the ratio Sh/Nu of the average Sherwood number to Nusselt number under acoustic levitation condition is 1.3 times of that under natural convection condition. This suggests that the acoustic streaming boundary layer effectively strengthens the evaporation but has less promotion effect on the heat transfer. Therefore, the drop temperature declines to a lower value and the evaporation induced solidification occurs under acoustic levitation condition. Accordingly, a necessary condition for the occurrence of evaporation induced solidification of volatile liquids is proposed.
    • 基金项目: 国家自然科学基金(批准号:51071126)资助的课题.
    [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Ohsaka K, Trinh E H 1989 J.Cryst. Growth 96 973

    [3]

    Trinh E H 1985 Rev. Sci. Instrum. 56 2059

    [4]

    Ohsaka K, Trinh E H 1990 J. Cryst. Growth 106 191

    [5]

    Trinh E H, Ohsaka K 1995 Int. J. Thermophy. 16 545

    [6]

    Santesson S, Nilsson S 2004 Anal. Bioanal. Chem. 378 1704

    [7]

    Shen C L, Xie W J, Wei B 2010 Phys. Rev. E 81 046305

    [8]

    Xie W J, Cao C D, Lü Y J, Wei B 2002 Phys. Rev. E 66 061601

    [9]

    Wang X D, Dong P, Yi G Y 2006 Acta Phys. Sin. 55 2092 (in Chinese) [王晓冬、董 鹏、仪桂云 2006 55 2092]

    [10]

    Hou H H, Sun X L, Shen Y M, Shao J D, Fan Z X, Yi K 2006 Acta Phys. Sin. 55 3124 (in Chinese) [侯海虹、孙喜莲、申雁鸣、邵建达、范正修、易 葵 2006 55 3124]

    [11]

    Zhang H Y, Chen K X, Zhu Y J, Chen Y M, He Y Y, Wu C Y, Wang J H, Liu S H 2002 Acta Phys. Sin. 51 444 (in Chinese) [张海燕、陈可心、朱燕娟、陈易明、何艳阳、伍春燕、王金华、刘颂豪 2002 51 444]

    [12]

    Trinh E H, Robey J I 1994 Phys. Fluids 6 3567

    [13]

    Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151

    [14]

    Kawahara N, Yarin A L, Brenn G, Kastner O, Durst F 2000 Phys.Fluids 12 912

    [15]

    Tuckermann R, Puskar L, Zavabeti M, Sekine R, McNaughton D 2009 Anal. Bioanal. Chem. 394 1433

    [16]

    Deliβen F, Leiterer J, Bienert R, Emmerling F, Thünemann A F 2008 Anal. Bioanal. Chem. 392 161

    [17]

    Tuckermann R, Bauerecker S, Cammenga H K 2007 J. Colloid Interface Sci. 310 559

    [18]

    Xie W J, Cao C D, Wei B B 1999 Acta Phys. Sin. 48 250 (in Chinese) [解文军、曹崇德、魏炳波 1999 48 250]

    [19]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [20]

    Poling B E, Prausnitz J M, O’Connell J P (Translated by Zhao H L, Wang F K, Chen S K) 2006 The Properties of Gases and Liquids (Beijing: Chemical Industry Press) p171 (in Chinese) [波林 B. E.、普劳斯尼茨 J. M.、奥康奈尔 J. P.著 赵红玲、王凤坤、陈圣坤译 2006 气液物性估算手册(北京:化学工业出版社)第171页]

    [21]

    Crank J 1975 The Mathematics of Diffusion (2nd ed) (Oxford: Clarendon Press) p169

  • [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Ohsaka K, Trinh E H 1989 J.Cryst. Growth 96 973

    [3]

    Trinh E H 1985 Rev. Sci. Instrum. 56 2059

    [4]

    Ohsaka K, Trinh E H 1990 J. Cryst. Growth 106 191

    [5]

    Trinh E H, Ohsaka K 1995 Int. J. Thermophy. 16 545

    [6]

    Santesson S, Nilsson S 2004 Anal. Bioanal. Chem. 378 1704

    [7]

    Shen C L, Xie W J, Wei B 2010 Phys. Rev. E 81 046305

    [8]

    Xie W J, Cao C D, Lü Y J, Wei B 2002 Phys. Rev. E 66 061601

    [9]

    Wang X D, Dong P, Yi G Y 2006 Acta Phys. Sin. 55 2092 (in Chinese) [王晓冬、董 鹏、仪桂云 2006 55 2092]

    [10]

    Hou H H, Sun X L, Shen Y M, Shao J D, Fan Z X, Yi K 2006 Acta Phys. Sin. 55 3124 (in Chinese) [侯海虹、孙喜莲、申雁鸣、邵建达、范正修、易 葵 2006 55 3124]

    [11]

    Zhang H Y, Chen K X, Zhu Y J, Chen Y M, He Y Y, Wu C Y, Wang J H, Liu S H 2002 Acta Phys. Sin. 51 444 (in Chinese) [张海燕、陈可心、朱燕娟、陈易明、何艳阳、伍春燕、王金华、刘颂豪 2002 51 444]

    [12]

    Trinh E H, Robey J I 1994 Phys. Fluids 6 3567

    [13]

    Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151

    [14]

    Kawahara N, Yarin A L, Brenn G, Kastner O, Durst F 2000 Phys.Fluids 12 912

    [15]

    Tuckermann R, Puskar L, Zavabeti M, Sekine R, McNaughton D 2009 Anal. Bioanal. Chem. 394 1433

    [16]

    Deliβen F, Leiterer J, Bienert R, Emmerling F, Thünemann A F 2008 Anal. Bioanal. Chem. 392 161

    [17]

    Tuckermann R, Bauerecker S, Cammenga H K 2007 J. Colloid Interface Sci. 310 559

    [18]

    Xie W J, Cao C D, Wei B B 1999 Acta Phys. Sin. 48 250 (in Chinese) [解文军、曹崇德、魏炳波 1999 48 250]

    [19]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [20]

    Poling B E, Prausnitz J M, O’Connell J P (Translated by Zhao H L, Wang F K, Chen S K) 2006 The Properties of Gases and Liquids (Beijing: Chemical Industry Press) p171 (in Chinese) [波林 B. E.、普劳斯尼茨 J. M.、奥康奈尔 J. P.著 赵红玲、王凤坤、陈圣坤译 2006 气液物性估算手册(北京:化学工业出版社)第171页]

    [21]

    Crank J 1975 The Mathematics of Diffusion (2nd ed) (Oxford: Clarendon Press) p169

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展.  , 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [3] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子.  , 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [4] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应.  , 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [5] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应.  , 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [6] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平. 空气中一维声栅对微粒的声操控.  , 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [7] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术.  , 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [8] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [9] 刘聪, 徐晓东, 刘晓峻. 全向入射条件下一维固流周期结构中低频声裂隙变化特性研究.  , 2013, 62(20): 204302. doi: 10.7498/aps.62.204302
    [10] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究.  , 2013, 62(13): 134306. doi: 10.7498/aps.62.134306
    [11] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究.  , 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [12] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [13] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究.  , 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [14] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像.  , 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [15] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究.  , 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [16] 解文军, 曹崇德, 魏炳波. 声悬浮的实验研究和数值模拟分析.  , 1999, 48(2): 250-256. doi: 10.7498/aps.48.250
    [17] 钱祖文. 颗粒介质中声衰减的浓悬浮粒子理论及其应用.  , 1988, 37(1): 64-70. doi: 10.7498/aps.37.64
    [18] 王佐卿, 周素华, 汪承浩. 声表面波在声栅上的Bragg衍射.  , 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
    [19] 宗有泰, 钱幼能, 周鸿赉. 超流Hell中第一声、第二声和第四声声速的测量.  , 1980, 29(11): 1513-1516. doi: 10.7498/aps.29.1513
    [20] 钱祖文. 关于声散射声.  , 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  9641
  • PDF下载量:  887
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-17
  • 修回日期:  2011-02-10
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map