Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ring deposition of drying suspension droplets

Zhang Wen-Bin Liao Long-Guang Yu Tong-Xu Ji Ai-Ling

Citation:

Ring deposition of drying suspension droplets

Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Deposition of colloidal particles in a drying droplet is important in many scientific researches and technological applications. In this work, the ring deposition of drying droplets on a solid substrate is investigated experimentally at a microscopic level. A ring deposition is formed at the contact line as the water solution droplet containing SiO2 particles is drying, just like the formation of coffee ring. Contact line pinning is crucial to the ring deposition formation. There will be a replenish flow in the droplet towards the edge, and the particles are driven to the contact line, deposited on the substrate. As the particle mass fraction is large, the particles which are left inside the spot, when the droplet dries out, may form a single particle layer, packing in order. The contact angle of the droplet on glass substrate is very small, the SiO2 particles will gather at the rim of the droplet, which initially form a chain along the contact line. As more particles come to the rim, they are deposited in a line by line way to form a 2D close packing. Since the contact angle decreases with evaporation when the contact line is pinned, a capillary force between liquid surface and particles arises once the height of droplet surface near the contact line is lower than that of the particle, pushing the particles to move inward. The effect on the larger particles is more pronounced-it even leads to a separation of the particles, with the smaller ones at the outer side.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB930801, 2012CB933002), the National Natural Science Foundation of China (Grant Nos. 11290161, 51172272), and the National Basic Research Program of China, the Innovation Program of the Chinese Academy of Sciences.
    [1]

    Monteux C, Lequeux F 2011 Langmuir 27 2917

    [2]

    Bhardwaj R, Fang X H, Somasundaran P, Attinger D 2010 Langmuir 26 7833

    [3]

    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B 2010 Phys. Rev. Lett. 105 266103

    [4]

    Li J, Cabane B, Sztucki M, Gummel J, Goehring L 2012 Langmuir 28 200

    [5]

    Fischer B J 2002 Langmuir 18 60

    [6]

    Velikov K P 2002 Science 296 106

    [7]

    Chen L F, Evans J R G 2009 Langmuir 25 11299

    [8]

    Bhardwaj R, Fang X H, Attinger D 2009 New J. Phys. 11 075020

    [9]

    Keseroğlu K, Çulha M 2011 J. Colloid Interface Sci. 360 8

    [10]

    Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M 2006 Nat. Mater. 5 265

    [11]

    Choi S, Stassi S, Pisano A P, Zohdi T I 2010 Langmuir 26 11690

    [12]

    Hodges C S, Ding Y L, Biggs S 2010 J.Colloid Interface Sci. 352 99

    [13]

    Kaya D, Belyi V A, Muthukumar M 2010 J. Chem. Phys. 133 114905

    [14]

    Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D, Wong G C L 2006 Phys. Rev. Lett. 96 177801

    [15]

    Yakhno T A 2011 Phys. Chem. 1 10

    [16]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [18]

    Yunker P J, Gratale M, Lohr M A, Still T, Lubensky T C, Yodh A G 2012 Phys. Rev. Lett. 108 228303

    [19]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [20]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [21]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

    [22]

    Truskett V, Stebe K J 2003 Langmuir 19 8271

    [23]

    Ristenpart W D, Kim P G, Domingues C, Wan J, Stone H A 2007 Phys. Rev. Lett. 99 234502

    [24]

    Xu J, Xia J F, Hong S W, Lin Z Q, Qiu F, Yang Y L 2006 Phys. Rev. Lett. 96 066104

    [25]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [26]

    Maheshwari S, Zhang L, Zhu Y X, Chang H C 2008 Phys. Rev. Lett. 100 044503

    [27]

    Schäffer E, W P Z 2000 Phys. Rev. E 61 5257

    [28]

    Schäffer E, Wong P Z 1998 Phys. Rev. Lett. 80 3069

    [29]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [30]

    Jensen K E, Pennachio D, Recht D, Weitz D A, Spaepen F 2013 Soft Matter 9 320

    [31]

    Zhang J H, Li Y F, Zhang X M, Yang B 2010 Adv. Mater. 22 4249

    [32]

    Weon B M, Je J H 2010 Phys. Rev. E 82 015305

  • [1]

    Monteux C, Lequeux F 2011 Langmuir 27 2917

    [2]

    Bhardwaj R, Fang X H, Somasundaran P, Attinger D 2010 Langmuir 26 7833

    [3]

    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B 2010 Phys. Rev. Lett. 105 266103

    [4]

    Li J, Cabane B, Sztucki M, Gummel J, Goehring L 2012 Langmuir 28 200

    [5]

    Fischer B J 2002 Langmuir 18 60

    [6]

    Velikov K P 2002 Science 296 106

    [7]

    Chen L F, Evans J R G 2009 Langmuir 25 11299

    [8]

    Bhardwaj R, Fang X H, Attinger D 2009 New J. Phys. 11 075020

    [9]

    Keseroğlu K, Çulha M 2011 J. Colloid Interface Sci. 360 8

    [10]

    Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M 2006 Nat. Mater. 5 265

    [11]

    Choi S, Stassi S, Pisano A P, Zohdi T I 2010 Langmuir 26 11690

    [12]

    Hodges C S, Ding Y L, Biggs S 2010 J.Colloid Interface Sci. 352 99

    [13]

    Kaya D, Belyi V A, Muthukumar M 2010 J. Chem. Phys. 133 114905

    [14]

    Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D, Wong G C L 2006 Phys. Rev. Lett. 96 177801

    [15]

    Yakhno T A 2011 Phys. Chem. 1 10

    [16]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [18]

    Yunker P J, Gratale M, Lohr M A, Still T, Lubensky T C, Yodh A G 2012 Phys. Rev. Lett. 108 228303

    [19]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [20]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [21]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

    [22]

    Truskett V, Stebe K J 2003 Langmuir 19 8271

    [23]

    Ristenpart W D, Kim P G, Domingues C, Wan J, Stone H A 2007 Phys. Rev. Lett. 99 234502

    [24]

    Xu J, Xia J F, Hong S W, Lin Z Q, Qiu F, Yang Y L 2006 Phys. Rev. Lett. 96 066104

    [25]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [26]

    Maheshwari S, Zhang L, Zhu Y X, Chang H C 2008 Phys. Rev. Lett. 100 044503

    [27]

    Schäffer E, W P Z 2000 Phys. Rev. E 61 5257

    [28]

    Schäffer E, Wong P Z 1998 Phys. Rev. Lett. 80 3069

    [29]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [30]

    Jensen K E, Pennachio D, Recht D, Weitz D A, Spaepen F 2013 Soft Matter 9 320

    [31]

    Zhang J H, Li Y F, Zhang X M, Yang B 2010 Adv. Mater. 22 4249

    [32]

    Weon B M, Je J H 2010 Phys. Rev. E 82 015305

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [3] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [4] Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang. Behavioral characteristics of droplet collision on Janus particle spheres. Acta Physica Sinica, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [5] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [6] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Thermocapillary migration characteristics of self-rewetting drop. Acta Physica Sinica, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [7] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing. Study on evaporation from alloys used in microwave vacuum electron devices. Acta Physica Sinica, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [9] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate. Acta Physica Sinica, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [10] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [11] Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang. Stick-slip transition of a water droplet vibrated on a superhydrophobic surface. Acta Physica Sinica, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [12] Bi Fei-Fei, Guo Ya-Li, Shen Sheng-Qiang, Chen Jue-Xian, Li Yi-Qiao. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [13] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [14] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] Sun Gang, Wu Yu-Hang, Zheng Ning, Wen Ping-Ping, Li Liang-Sheng, Shi Qing-Fan. Volume effect in the cyclic segregation of quasi two-dimensional binary granular mixture. Acta Physica Sinica, 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [16] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [17] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [18] Shi Juan, Li Jian, Qiu Bing, Li Hua-Bing. Lattice Boltzmann simulation of particles moving in a vortex flow. Acta Physica Sinica, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [19] Dai Bing, Luo Xiang-Dong, Wang Ya-Wei. Multiple light scattering of non-spherical particles with elliptical cross section. Acta Physica Sinica, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [20] Shu Xue-Ming, Fang Jun, Shen Shi-Fei, Liu Yong-Jin, Yuan Hong-Yong, Fan Wei-Cheng. Study on fractal coagulation characteristics of fire smoke particles. Acta Physica Sinica, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
Metrics
  • Abstract views:  7179
  • PDF Downloads:  576
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2013
  • Accepted Date:  06 July 2013
  • Published Online:  05 October 2013

/

返回文章
返回
Baidu
map