Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops

He Hua-Dan Zhong Qi-Chao Xie Wen-Jun

Citation:

Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops

He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun
PDF
HTML
Get Citation
  • As a ground-based experimental method for simulating the containerless state in space, acoustic levitation provides excellent containerless and contact-free conditions for studying droplet dynamics, including droplet evaporation and phase separation. Meanwhile, the nonlinear effects of the acoustic field, such as acoustic radiation pressure and acoustic streaming, bring novel characteristics to the droplet evaporation process and phase separation process. In this work, the evaporation and phase separation of aqueous two-phase-system (ATPS) droplet composed of polyethylene glycol (PEG) and ammonium sulfate (AMS) are investigated by a single-axis acoustic levitator through the combination of image acquisition and processing technique. During the evaporation of the ATPS droplet, the square of its equatorial diameter, $ {d}^{2} $, decreases linearly with time, and its aspect ratio, $ \gamma $, increases linearly with time. The PEG-AMS droplet initially in the single-phase regime can enter into the two-phase regime as the water evaporates, resulting in phase separation. The phase separation of the acoustically levitated PEG-AMS ATPS droplet includes three stages: first, a large number of PEG-rich globules form inside the ATPS droplet, and then these PEG-rich globules collide, coagulate and migrate outward, and finally a horizontal layered structure of the whole droplet comes into being. The evaporation constant, the evolution of the PEG-rich globules and the AMS-rich phase area, are analyzed for ATPS droplets with different initial aspect ratios and different initial compositions. It is concluded that the greater the initial aspect ratio and the smaller the volume fraction of the PEG-rich phase, the faster the evaporation rate of the droplet is; the greater the initial aspect ratio and the lager the volume fraction of the PEG-rich phase, the faster the phase separation is. Numerical simulations show that the acoustically levitated droplets with a large aspect ratio are subjected to greater acoustic radiation pressure on the surface, and that the corresponding sound field is more intense and the acoustic streaming is stronger, which accelerates the evaporation and phase separation of the levitated droplets. These findings contribute to deepening our understanding of the motion characteristics, evaporation dynamics and phase separation of acoustically levitated droplets, and provide a foundation for studying the containerless preparation and processing the materials under acoustic levitation.
      Corresponding author: Xie Wen-Jun, wjxie@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0716301), the National Natural Science Foundation of China (Grant Nos. 52088101, 52225406), and the AECC Industry-University-Research Collaboration Program, China (Grant No. HFZL2021CXY019).
    [1]

    Andrade M A B, Pérez N, Adamowski J C 2018 Braz. J. Phys. 48 190Google Scholar

    [2]

    Xie W J, Wei B 2001 Appl. Phys. Lett. 79 881Google Scholar

    [3]

    Geng D L, Yan N, Xie W J, Lü Y J, Wei B B 2023 Adv. Mater. 35 2206464Google Scholar

    [4]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [5]

    Ami Y B, Manela A 2021 J. Fluid Mech. 916 A24Google Scholar

    [6]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [7]

    Combe N A, Donaldson D J 2017 J. Phys. Chem. A 121 7197Google Scholar

    [8]

    Bunio L B, Wang J, Kannaiyan R, Gates I D 2022 Chem. Eng. Sci. 251 117441Google Scholar

    [9]

    Inserra C, Regnault G, Cleve S, Mauger C, Blanc-Benon P 2021 J. Vis. Exp. 171 e62044Google Scholar

    [10]

    Lu X L, Twiefel J, Ma Z C, Yu T T, Wallaschek J, Fischer P 2021 Adv. Sci. 8 2100888Google Scholar

    [11]

    Xie W J, Wei B B 2004 Phys. Rev. E 70 046611Google Scholar

    [12]

    Argyri S M, Evenäs L, Bordes R 2023 J. Colloid Interface Sci. 640 637Google Scholar

    [13]

    杜人君, 解文军 2011 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [14]

    Tuckermann R, Puskar L, Zavabeti M, Sekine R, Mcnaughton D 2009 Anal. Bioanal. Chem. 394 1433Google Scholar

    [15]

    Zaitone B A 2018 Int. J. Heat Mass Transf. 126 164Google Scholar

    [16]

    Maruyama Y, Hasegawa K 2020 RSC Adv. 10 1870Google Scholar

    [17]

    Brutin D, Starov V 2018 Chem. Soc. Rev. 47 558Google Scholar

    [18]

    Junk M, Hinrichs J, Polt F, Fechner J, Pauer W 2020 Int. J. Heat Mass Transf. 149 119057Google Scholar

    [19]

    Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151Google Scholar

    [20]

    Yarin A L, Brenn G, Rensink D 2002 Int. J. Heat Fluid Flow 23 471Google Scholar

    [21]

    翟薇, 王楠, 魏炳波 2007 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [22]

    Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C 2010 Adv. Mater. 22 E63Google Scholar

    [23]

    Zhu J, Jiang L 2022 Langmuir 38 9043Google Scholar

    [24]

    齐玉, 曲昌荣, 王丽, 方腾 2014 63 046401Google Scholar

    Qi Y, Qu C R, Wang L, Fang T 2014 Acta Phys. Sin. 63 046401Google Scholar

    [25]

    张鹏程, 方文玉, 鲍磊, 康文斌 2020 69 138701Google Scholar

    Zhang P C, Fang W Y, Bao L, Kang W B 2020 Acta Phys. Sin. 69 138701Google Scholar

    [26]

    Molino J V D, Marques D A V, Júnior A P, Mazzola P G, Gatti M S V 2013 Biotechnol. Prog. 29 1343Google Scholar

    [27]

    Zhong Q C, Xie W J 2020 Appl. Phys. Lett. 116 224101Google Scholar

    [28]

    Chao Y, Shum H C 2020 Chem. Soc. Rev. 49 114Google Scholar

    [29]

    King L V 1934 Proc. Roy. Soc. A 147 212Google Scholar

    [30]

    Huddleston J G, Willauer H D, Rogers R D 2003 J. Chem. Eng. Data 48 1230Google Scholar

  • 图 1  单轴式声悬浮实验装置示意图

    Figure 1.  Schematic diagram of single-axis acoustic levitator.

    图 2  H2O-10%PEG-10%AMS单相液滴的蒸发 (a) 质量随时间的变化; (b) 相分离情况

    Figure 2.  Evaporation of H2O-10%PEG-10%AMS single-phase droplet: (a) Variation of mass with time; (b) phase separation.

    图 3  硫酸铵溶液电导率与浓度(质量分数)的关系

    Figure 3.  Relationship between conductivity and concentration (mass fraction) of ammonium sulfate solution.

    图 4  不同横纵比的H2O-10%PEG-10%AMS液滴蒸发过程

    Figure 4.  Evaporation of H2O-10%PEG-10%AMS droplets with different aspect ratios.

    图 5  液滴表面声辐射压分布与反射端-发射端间距H0的关系 (a) H0 = 34.1 mm时声场中的声辐射压分布; (b) 不同H0对应的液滴上下表面的声辐射压(空心符号和实心符号分别表示液滴上下表面)

    Figure 5.  Relationship between the acoustic radiation pressure on the droplet’s surface and the reflector-emitter distance H0: (a) Distribution of acoustic radiation pressure when H0 = 34.1 mm; (b) acoustic radiation pressure on the upper and lower surfaces of the droplets with different H0 (the open symbols indicate the data on the upper surface, and the solid symbols the lower surface).

    图 6  不同成分相同初始横纵比液滴蒸发过程对比 (a) 赤道直径变化; (b) 横纵比变化

    Figure 6.  Evaporation of droplets with different compositions and the same initial aspect ratio: (a) Variation of equatorial diameters; (b) variation of aspect ratios.

    图 7  H2O-32%PEG-21%AMS双水相液滴的相分离过程, 红色区域为富PEG相, 透明区域为富AMS相

    Figure 7.  Phase separation of H2O-32%PEG-21%AMS ATPS droplet. The red area is the PEG-rich phase and the transparent area is the AMS-rich phase.

    图 8  不同成分双水相液滴的相分离过程分析 (a) 富PEG相微滴数量的演化; (b) 富AMS透明区等效直径的演化

    Figure 8.  Phase separation of ATPS droplet with different compositions: (a) Number of PEG-rich globules vs. time; (b) equivalent diameter of AMS-rich transparent region vs. time.

    图 9  不同初始横纵比的双水相液滴的相分离过程 (a) 富PEG相微滴数量的演化; (b) 富AMS透明区等效直径的演化

    Figure 9.  Phase separation of ATPS droplet with different initial aspect ratios: (a) Number of PEG-rich globules vs. time; (b) equivalent diameter of AMS-rich transparent region vs. time.

    表 1  三种成分的PEG-AMS双水相液体参数

    Table 1.  Parameters of three PEG-AMS ATPS liquids with different compositions.

    序号 成分(质量分数)/% 上下相体积比$ {V}_{{{T}}}/{V}_{{{B}}} $
    H2O PEG AMS
    51 22 27 0.47
    47 32 21 0.96
    43 43 14 2.08
    DownLoad: CSV

    表 2  声场模拟采用的物理参数

    Table 2.  Physical parameters for acoustic simulation.

    参数数值注释
    $ {H}_{0} $/mm34—35反射端-发射端间距
    $ {R}_{0} $/mm40反射端曲率半径
    $ {R}_{{\mathrm{b}}} $/mm20反射端截面半径
    $ {R}_{{\mathrm{a}}} $/mm12发射端截面半径
    $ {H}_{{\mathrm{s}}} $/mm20样品位置
    $ {R}_{1} $/mm2液滴半长轴
    $ {r}_{1} $/mm1液滴半短轴
    $ {\rho }_{0} $/(kg·m–3)1.293空气密度
    $ {c}_{0} $/(m·s–1)340空气中声速
    $ {v}_{0} $/(m·s–1)0.8916发射端振动速度幅值
    $ {f}_{0} $/kHz22超声波频率
    DownLoad: CSV

    表 3  H2O-10%PEG-10%AMS液滴蒸发过程中上、下相的成分变化

    Table 3.  Compositions of the top phase and bottom phase during evaporation of H2O-10%PEG-10%AMS droplet.

    蒸发时间/min 液滴成分(质量分数)/%
    上相成分 (质量分数)/%
    下相成分(质量分数)/%
    H2O PEG AMS H2O PEG AMS H2O PEG AMS
    0 80.0 10.0 10.0
    5 78.4 10.8 10.8
    10 76.6 11.7 11.7 75.2 15.6 9.2 80.4 0.7 18.9
    15 75.2 12.4 12.4 73.0 18.8 8.2 79.0 0.3 20.7
    20 73.6 13.2 13.2 70.8 21.7 7.5 78.0 0.0 22.0
    25 71.2 14.4 14.4 66.5 27.5 6.0 76.2 0.0 23.8
    30 68.8 15.6 15.6 62.4 33.2 4.4 74.2 0.0 25.8
    DownLoad: CSV
    Baidu
  • [1]

    Andrade M A B, Pérez N, Adamowski J C 2018 Braz. J. Phys. 48 190Google Scholar

    [2]

    Xie W J, Wei B 2001 Appl. Phys. Lett. 79 881Google Scholar

    [3]

    Geng D L, Yan N, Xie W J, Lü Y J, Wei B B 2023 Adv. Mater. 35 2206464Google Scholar

    [4]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [5]

    Ami Y B, Manela A 2021 J. Fluid Mech. 916 A24Google Scholar

    [6]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [7]

    Combe N A, Donaldson D J 2017 J. Phys. Chem. A 121 7197Google Scholar

    [8]

    Bunio L B, Wang J, Kannaiyan R, Gates I D 2022 Chem. Eng. Sci. 251 117441Google Scholar

    [9]

    Inserra C, Regnault G, Cleve S, Mauger C, Blanc-Benon P 2021 J. Vis. Exp. 171 e62044Google Scholar

    [10]

    Lu X L, Twiefel J, Ma Z C, Yu T T, Wallaschek J, Fischer P 2021 Adv. Sci. 8 2100888Google Scholar

    [11]

    Xie W J, Wei B B 2004 Phys. Rev. E 70 046611Google Scholar

    [12]

    Argyri S M, Evenäs L, Bordes R 2023 J. Colloid Interface Sci. 640 637Google Scholar

    [13]

    杜人君, 解文军 2011 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [14]

    Tuckermann R, Puskar L, Zavabeti M, Sekine R, Mcnaughton D 2009 Anal. Bioanal. Chem. 394 1433Google Scholar

    [15]

    Zaitone B A 2018 Int. J. Heat Mass Transf. 126 164Google Scholar

    [16]

    Maruyama Y, Hasegawa K 2020 RSC Adv. 10 1870Google Scholar

    [17]

    Brutin D, Starov V 2018 Chem. Soc. Rev. 47 558Google Scholar

    [18]

    Junk M, Hinrichs J, Polt F, Fechner J, Pauer W 2020 Int. J. Heat Mass Transf. 149 119057Google Scholar

    [19]

    Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151Google Scholar

    [20]

    Yarin A L, Brenn G, Rensink D 2002 Int. J. Heat Fluid Flow 23 471Google Scholar

    [21]

    翟薇, 王楠, 魏炳波 2007 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [22]

    Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C 2010 Adv. Mater. 22 E63Google Scholar

    [23]

    Zhu J, Jiang L 2022 Langmuir 38 9043Google Scholar

    [24]

    齐玉, 曲昌荣, 王丽, 方腾 2014 63 046401Google Scholar

    Qi Y, Qu C R, Wang L, Fang T 2014 Acta Phys. Sin. 63 046401Google Scholar

    [25]

    张鹏程, 方文玉, 鲍磊, 康文斌 2020 69 138701Google Scholar

    Zhang P C, Fang W Y, Bao L, Kang W B 2020 Acta Phys. Sin. 69 138701Google Scholar

    [26]

    Molino J V D, Marques D A V, Júnior A P, Mazzola P G, Gatti M S V 2013 Biotechnol. Prog. 29 1343Google Scholar

    [27]

    Zhong Q C, Xie W J 2020 Appl. Phys. Lett. 116 224101Google Scholar

    [28]

    Chao Y, Shum H C 2020 Chem. Soc. Rev. 49 114Google Scholar

    [29]

    King L V 1934 Proc. Roy. Soc. A 147 212Google Scholar

    [30]

    Huddleston J G, Willauer H D, Rogers R D 2003 J. Chem. Eng. Data 48 1230Google Scholar

  • [1] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [2] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [3] Ji Dan-Dan, Zhang Shao-Guang. Phase separation pattern transition of three-domain vesicles. Acta Physica Sinica, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [4] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [5] Lin Mao-Jie, Chang Jian, Wu Yu-Hao, Xu Shan-Sen, Wei Bing-Bo. Fluid convection and solidification mechanisms of liquid Fe50Cu50 alloy under electromagnetic levitation condition. Acta Physica Sinica, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [6] Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing. Study on evaporation from alloys used in microwave vacuum electron devices. Acta Physica Sinica, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [7] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [8] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [10] Ren Qun, Wang Nan, Zhang Li, Wang Jian-Yuan, Zheng Ya-Ping, Yao Wen-Jing. The effects of spinodal decomposition and nucleation on phase separation. Acta Physica Sinica, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [11] Shao Xue-Peng, Xie Wen-Jun. Sectorial oscillation of acoustically levitated viscous drops. Acta Physica Sinica, 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [12] Yan Zhen-Lin, Xie Wen-Jun, Shen Chang-Le, Wei Bing-Bo. Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop. Acta Physica Sinica, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [13] Du Ren-Jun, Xie Wen-Jun. Evaporation induced solidification of cyclohexane drops under acoustic levitation condition. Acta Physica Sinica, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [14] Wang Qiang. Charge order and phase separation in Bi0.5Ca0.5Mn1-xCoxO3 system. Acta Physica Sinica, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [15] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [16] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [17] Zhai Wei, Wang Nan, Wei Bing-Bo. Direct observation of phase separation in binary monotectic solution. Acta Physica Sinica, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [18] Jiang Zhong-Ying, Yu Wei-Zhong, Huang Yan-Jun, Xia Yuan-Fu, Ma Shu-Xin. Phase behavior and thermal dynamic properties of free volume on SMMA/SMA copolymer blend studied by PALS method. Acta Physica Sinica, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [19] Zhang Lin, Li En-Pu, Feng Wei, Hong Zhen-Yu, Xie Wen-Jun, Ma Yang-Hua. A study of acoustic levitation process based on laser holographic interferometry. Acta Physica Sinica, 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [20] Xu Jin-Feng, Wei Bing-Bo. Liquid phase flow and microstructure formation during rapid solidification. Acta Physica Sinica, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
Metrics
  • Abstract views:  1996
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2023
  • Accepted Date:  07 December 2023
  • Available Online:  29 December 2023
  • Published Online:  05 February 2024

/

返回文章
返回
Baidu
map