搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力条件下不同截面形状管中毛细流动的实验研究

徐升华 周宏伟 王彩霞 王林伟 孙祉伟

引用本文:
Citation:

微重力条件下不同截面形状管中毛细流动的实验研究

徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟

Experimental study on the capillary flow in tubes of different shapes under microgravity condition

Xu Sheng-Hua, Zhou Hong-Wei, Wang Cai-Xia, Wang Lin-Wei, Sun Zhi-Wei
PDF
导出引用
  • 利用落塔设施创造的短时间微重力条件, 研究了不同尺寸的正方形和三角形截面的毛细管中的流体在微重力条件下的流动行为, 并与圆形毛细管中的毛细流动进行了对比, 总结出了毛细管尺寸和截面形状对界面张力主导的毛细流动行为的影响规律. 结果显示, 对于同样形状的毛细管, 其尺寸对于毛细流动的影响规律基本相同; 而对于不同的截面形状, 方形管和三角形管都与截面积小得多的圆形管有一定的类似性. 相关结果对于深入理解不同条件下的界面张力主导的毛细流动特性, 以及在空间微重力条件下通过改变毛细管的形状来实现流速和流量的独 立控制等方面都具有明显的现实意义.
    In this paper, we study the capillary flows in square tubes and in equilateral triangle tubes under microgravity condition by performing experiments in drop tower, and also compare them with those in circular tubes. Experimental results showned the influence of both size and shape of tubes on the capillary flow driven by interfacial forces. For tubes of the same shape, the influence of tube size is quite similar. Moreover, the capillary flows in square tubes and equilateral triangle tubes have some similarity with those in circular tubes with much smaller sizes. The results are helpful for understanding the capillary flows driven by interfacial forces with different parameters. And they are also useful for independently controlling the flow velocity and the volume flow rate by choosing appropriate tube shapes under microgravity condition.
    • 基金项目: 国家自然科学基金(批准号: 11032011, 11172302)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11032011, 11172302).
    [1]

    Young T 1805 Phil. Trans. Roy. soc. Lond. 95 65

    [2]

    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E 2009 Rev. Mod. Phys. 81 739

    [3]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [4]

    Chibowski E 2007 Adv. Colloid Interface Sci. 133 51

    [5]

    u S H, Wang L W, Sun Z W, Wang C X 2012 Acta Phys. Sin. 61 166801 (in Chinese) [徐升华, 王林伟, 孙祉伟, 王彩霞 2012 61 166801]

    [6]

    Sikalo S, Wihelm H D, Roisman I V, Jakirlic S, Tropea C 2005 Phys. Fluids 17 062103

    [7]

    Reznik S N, Yarin A L 2002 Phys. Fluids 14 118

    [8]

    Bazhlekov I B, Shopov P J 1997 J. Fluid Mech. 352 113

    [9]

    Xu S H, Wang C X, Sun Z W, Hu W R 2011 Int. J. Heat Mass Trans. 54 2222

    [10]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Trans. 53 1801

    [11]

    Brady V, Concus P, Finn R 2003 Phys. Fluids 15 1545

    [12]

    Tsori Y 2006 Langmuir 22 8860

    [13]

    Erickson D, Li D, Park C B 2002 J. Colloid Interface Sci. 250 422

    [14]

    Dreyer M E, Delgado A, Rath H J 1994 J. Colloid Interface Sci. 163 158

    [15]

    Stange M, Dreyer M E, Rath H J 2003 Phys. Fluids 15 2587

    [16]

    Wang C X, Xu S H, Sun Z W, Hu W R 2009 AIAA J. 47 2642

    [17]

    Concus P, Finn R 1974 Acta Math. 132 177

    [18]

    Concus P, Finn R 1974 Acta Math. 132 207

    [19]

    Finn R 1984 J. Reine Angew. Math. 353 196

    [20]

    Chen Y, Collicott S H 2004 AIAA J. 42 305

    [21]

    Chen Y, Collicott S H 2005 AIAA J. 43 2395

    [22]

    Chen Y, Collicott S H 2006 AIAA J. 44 859

    [23]

    Ichikawa N, Satoda Y 1994 J. Colloid Interface Sci. 162 350

    [24]

    Wolf F G, dos Santos L O E, Philippi P C 2010 J.Colloid Interface Sci. 344 171

    [25]

    Zhang X Q, Yuan L G, Wu W D, Tian L Q, Yao K Z 2005 Scien. China E 35 523 (in Chinese) [张孝谦, 袁龙根, 吴文东, 田兰桥, 姚康庄 2005 中国科学E辑 35 523]

    [26]

    Weislogel M M, Ross H D 1990 NASA-TM-103641 (NASA report)

  • [1]

    Young T 1805 Phil. Trans. Roy. soc. Lond. 95 65

    [2]

    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E 2009 Rev. Mod. Phys. 81 739

    [3]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [4]

    Chibowski E 2007 Adv. Colloid Interface Sci. 133 51

    [5]

    u S H, Wang L W, Sun Z W, Wang C X 2012 Acta Phys. Sin. 61 166801 (in Chinese) [徐升华, 王林伟, 孙祉伟, 王彩霞 2012 61 166801]

    [6]

    Sikalo S, Wihelm H D, Roisman I V, Jakirlic S, Tropea C 2005 Phys. Fluids 17 062103

    [7]

    Reznik S N, Yarin A L 2002 Phys. Fluids 14 118

    [8]

    Bazhlekov I B, Shopov P J 1997 J. Fluid Mech. 352 113

    [9]

    Xu S H, Wang C X, Sun Z W, Hu W R 2011 Int. J. Heat Mass Trans. 54 2222

    [10]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Trans. 53 1801

    [11]

    Brady V, Concus P, Finn R 2003 Phys. Fluids 15 1545

    [12]

    Tsori Y 2006 Langmuir 22 8860

    [13]

    Erickson D, Li D, Park C B 2002 J. Colloid Interface Sci. 250 422

    [14]

    Dreyer M E, Delgado A, Rath H J 1994 J. Colloid Interface Sci. 163 158

    [15]

    Stange M, Dreyer M E, Rath H J 2003 Phys. Fluids 15 2587

    [16]

    Wang C X, Xu S H, Sun Z W, Hu W R 2009 AIAA J. 47 2642

    [17]

    Concus P, Finn R 1974 Acta Math. 132 177

    [18]

    Concus P, Finn R 1974 Acta Math. 132 207

    [19]

    Finn R 1984 J. Reine Angew. Math. 353 196

    [20]

    Chen Y, Collicott S H 2004 AIAA J. 42 305

    [21]

    Chen Y, Collicott S H 2005 AIAA J. 43 2395

    [22]

    Chen Y, Collicott S H 2006 AIAA J. 44 859

    [23]

    Ichikawa N, Satoda Y 1994 J. Colloid Interface Sci. 162 350

    [24]

    Wolf F G, dos Santos L O E, Philippi P C 2010 J.Colloid Interface Sci. 344 171

    [25]

    Zhang X Q, Yuan L G, Wu W D, Tian L Q, Yao K Z 2005 Scien. China E 35 523 (in Chinese) [张孝谦, 袁龙根, 吴文东, 田兰桥, 姚康庄 2005 中国科学E辑 35 523]

    [26]

    Weislogel M M, Ross H D 1990 NASA-TM-103641 (NASA report)

  • [1] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究.  , 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [2] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究.  , 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [3] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究.  , 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [4] 吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究.  , 2016, 65(10): 106402. doi: 10.7498/aps.65.106402
    [5] 石峰, 李伟斌, 李景庆, 蓝鼎, 王育人. 限位液滴瞬时失重自激振荡.  , 2015, 64(19): 196801. doi: 10.7498/aps.64.196801
    [6] 吴赛, 李伟斌, 石峰, 蒋世春, 蓝鼎, 王育人. 受限胶体液滴蒸发过程中胶体颗粒沉积过程观察.  , 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [7] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究.  , 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [8] 李永强, 刘玲. 微重力下变内角毛细驱动流研究.  , 2014, 63(21): 214704. doi: 10.7498/aps.63.214704
    [9] 李永强, 刘玲, 张晨辉, 段俐, 康琦. 微重力环境下无限长柱体内角毛细流动解析近似解研究.  , 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [10] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究.  , 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [11] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究.  , 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [12] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性.  , 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [13] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用.  , 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [14] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间.  , 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [15] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究.  , 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
    [16] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究.  , 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [17] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响.  , 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
    [18] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅲ).  , 2000, 49(12): 2502-2506. doi: 10.7498/aps.49.2502
    [19] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅱ).  , 2000, 49(12): 2498-2501. doi: 10.7498/aps.49.2498
    [20] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅰ).  , 2000, 49(12): 2494-2497. doi: 10.7498/aps.49.2494
计量
  • 文章访问数:  6915
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-21
  • 修回日期:  2013-01-16
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map