-
Based on the research of thermal cloak, directional heat transmission structure is proposed in this paper. On the basis of transformation thermodynamics, the thermal conductivity expression for directional heat transmission structure is derived by the oblique coordinate transformation. The results from the numeric calculation indicate that the heat flux flows to the designed high temperature side while the low temperature side remains at low temperature. Furthermore, rotational transformation is performed on the basis of oblique coordinate transformation. The derived thermal conductivity expression has two vertical segments. The calculation results display that with the increase of the thermal conductivity along the normal of the high temperature side, the heat transmission efficiency is improved greatly. Moreover, the temperature difference between the high and low temperature side increases after the rotational transformation. Directional heat transmission has potential applications in infrared stealth and heat protection.
-
Keywords:
- directional heat transmission /
- metamaterials /
- infrared stealth
[1] Zhang J J, Huang J T, Luo Y, Chen H S, Kong J A, Wu B I 2008 Phys. Rev. B 77 035116
[2] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[3] Cummer S A, Popa B, Schurig D, Smith D R, Pendry J 2006 Phys. Rev. E 74 036621
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 97
[5] Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 10 1038
[6] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[7] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[8] Yang C F, Yang J J, Huang M, Peng J H, Cai G H 2010 Comput. Mater. Sci. 49 820
[9] Yang J J, Huang M, Yang C F, Peng J H, Zong R 2010 Energies 3 1335
[10] Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907
[11] Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504
[12] Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102
[13] Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 63 014401]
[14] Guenneau S, Amra C 2013 Opt. Express 21 6578
[15] Li T H, Mao F C, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 054401 (in Chinese) [李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌 2014 63 054401]
[16] Schinnty R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901
[17] Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593
[18] Xiao H, Lin Z W 2013 Appl. Phys. Lett. 102 211912
-
[1] Zhang J J, Huang J T, Luo Y, Chen H S, Kong J A, Wu B I 2008 Phys. Rev. B 77 035116
[2] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[3] Cummer S A, Popa B, Schurig D, Smith D R, Pendry J 2006 Phys. Rev. E 74 036621
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 97
[5] Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 10 1038
[6] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[7] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[8] Yang C F, Yang J J, Huang M, Peng J H, Cai G H 2010 Comput. Mater. Sci. 49 820
[9] Yang J J, Huang M, Yang C F, Peng J H, Zong R 2010 Energies 3 1335
[10] Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907
[11] Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504
[12] Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102
[13] Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 63 014401]
[14] Guenneau S, Amra C 2013 Opt. Express 21 6578
[15] Li T H, Mao F C, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 054401 (in Chinese) [李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌 2014 63 054401]
[16] Schinnty R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901
[17] Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593
[18] Xiao H, Lin Z W 2013 Appl. Phys. Lett. 102 211912
Catalog
Metrics
- Abstract views: 7321
- PDF Downloads: 391
- Cited By: 0