搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁电耦合超材料本构矩阵获取方法的研究

徐新河 刘鹰 甘月红 刘文苗

引用本文:
Citation:

磁电耦合超材料本构矩阵获取方法的研究

徐新河, 刘鹰, 甘月红, 刘文苗

A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial

Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao
PDF
导出引用
  • 单负(仅介电常数或仅磁导率小于零)超材料以及由导线-开口谐振环组成的双负超材料本构参数的提取通常采用传统的S参数方法. 由于磁电耦合超材料存在交叉极化现象, 仅用介电常数和磁导率两个本构参数无法准确描述其电磁特性. 传统的S参数提取方法一开始就假定超材料仅具有介电常数和磁导率两个本构参数, 所以采用该方法提取磁电耦合超材料本构参数存在明显局限性. 将磁电耦合超材料中的电元件和磁元件分别等效为面电流和面磁流, 通过推导平均电通密度和磁通密度与外加电磁场的相互关系, 从理论上获取了磁电耦合超材料2×2 的本构参数矩阵, 确定了磁电耦合超材料这四个本构参数与磁元件的磁导率、电元件的介电常数、空间色散项和耦合系数之间的关系解析公式, 进而获得了折射率理论计算公式. 利用该折射率公式对折射率提取值进行了非线性拟合, 发现提取值和理论值之间的误差很小, 这个结果很好地验证了所给出的本构矩阵解析式和折射率公式的正确性. 根据拟合结果, 获得了磁电耦合超材料本构矩阵中四个电磁参数的频率响应曲线. 所提出的磁电耦合超材料本构矩阵参数获取方法将为研究磁电超材料中电元件和磁元件的耦合现象提供重要的理论参考.
    The constitutive parameters of single negative (only electric permittivity or only permeability less than zero) metamaterials and wires-split ring resonator metamaterials can usually be retrieved by the S parameter method. Due to the cross polarization phenomenon in magnetoelectric coupling metamaterial, only two constitutive parameters of permittivity and permeability cannot accurately describe the electromagnetic characteristics of the magnetoelectric coupling metamaterial. The traditional S parameter retrieval method starts with the assumption that the metamaterial has only two constitutive parameters of permittivity and permeability, so the method to retrieve the constitutive parameters of magnetoelectric coupling metamaterials is obviously restricted. In this paper, the electric component and magnetic component in a magnetoelectric coupling metamaterial cell are treated as being equivalent to the surface current and surface magnetic flow, respectively. By deriving the relationship of the average electric flux density and the average magnetic flux density to the external electromagnetic field, we obtain a constitutive parameters matrix (2×2) of the magnetoelectric coupling metamaterial, and find analytical formulas for the relationship between these four constitutive parameters of the magnetoelectric coupling metamaterial and the parameters such as the permittivity of the electric component, permeability of magnetic element, spatial dispersion, and coupling coefficient, and then deduce the refractive index formula. We use the refractive index formula to nonlinearly fit retrieval refractive index curves, and find very good agreement between the refractive index values theoretically predicted by analytical formulas and those obtained from numerical retrievals based on full-wave simulations, thereby verifying the proposed constitutive matrix analytic formula and the refractive index expression. According to the fitting results, we obtain the frequency response curves of the four electromagnetic parameters in constitutive matrix. The proposed method of retrieving the constitutive matrix parameters will provide an important theoretical reference for the researchers engaged in analyzing and studying the coupling phenomenon between electric component and magnetic component in a magnetoelectric metamaterial cell.
    • 基金项目: 国家自然科学基金(批准号: 61271028)、航空科学基金(批准号: BA201304304)、江西省教育厅科学技术研究项目(批准号: GJJ14528)和江西省研究生创新专项资金(批准号: YC2013-S218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271028), the Aeronautical Science Foundation of China (Grant No. BA201304304), the Science and Technology Research Projects of Education Department of Jiangxi Province, China (Grant No. GJJ14528), and the Graduate Innovation Foundation for Jiangxi Province, China (Grant No. YC2013-S218).
    [1]

    Veselago V G 1968 Soviet Physics Uspekhi 10 509

    [2]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104

    [3]

    Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [4]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [5]

    Gong J Q, Liang C H 2011 Acta Phys. Sin. 60 059204 (in Chinese) [龚建强, 梁昌洪 2011 60 059204]

    [6]

    Chen X, Grzegorczyk T M, Wu B I, Pacheco Jr J, Kong J A 2004 Phys. Rev. E 70 016608

    [7]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [8]

    He X J, Wang Y, Mei J S, Gui T L, Yin J H 2012 Chin. Phys. B 21 044101

    [9]

    Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101

    [10]

    Smith D R 2010 Phys. Rev. E 81 036605

    [11]

    Xu X H, Wu X, Xiao S Q, Gan Y H, Wang B Z 2013 Acta Phys. Sin. 62 084101 (in Chinese) [徐新河, 吴夏, 肖绍球, 甘月红, 王秉中 2013 62 084101]

    [12]

    Liu R P, Cui T J, Huang D, Zhao B, Smith D R 2007 Phys. Rev. E 76 026606

    [13]

    Xu X H, Xiao S Q, Gan Y H, Wang B Z 2013 Acta Phys. Sin. 62 104101 (in Chinese) [徐新河, 肖绍球, 甘月红, 王秉中 2013 62 104101]

    [14]

    Marque's R, Medina F, Rafii-El-Idrissi R 2002 Phys. Rev. E 65 144440

    [15]

    Zhang K Q, Li D J 2007 Electromagnetic Theory for Microwave and Optoelectronics (2nd Ed.) (New York: Berlin Heidelberg) p11

    [16]

    Schurig D, Mock J J, Smith D R 2006 Appl. Phys. Lett. 88 041109

    [17]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [18]

    Sihvola A H 1992 IEEE Trans. Antennas Propag. 40 188

  • [1]

    Veselago V G 1968 Soviet Physics Uspekhi 10 509

    [2]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104

    [3]

    Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [4]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [5]

    Gong J Q, Liang C H 2011 Acta Phys. Sin. 60 059204 (in Chinese) [龚建强, 梁昌洪 2011 60 059204]

    [6]

    Chen X, Grzegorczyk T M, Wu B I, Pacheco Jr J, Kong J A 2004 Phys. Rev. E 70 016608

    [7]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [8]

    He X J, Wang Y, Mei J S, Gui T L, Yin J H 2012 Chin. Phys. B 21 044101

    [9]

    Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101

    [10]

    Smith D R 2010 Phys. Rev. E 81 036605

    [11]

    Xu X H, Wu X, Xiao S Q, Gan Y H, Wang B Z 2013 Acta Phys. Sin. 62 084101 (in Chinese) [徐新河, 吴夏, 肖绍球, 甘月红, 王秉中 2013 62 084101]

    [12]

    Liu R P, Cui T J, Huang D, Zhao B, Smith D R 2007 Phys. Rev. E 76 026606

    [13]

    Xu X H, Xiao S Q, Gan Y H, Wang B Z 2013 Acta Phys. Sin. 62 104101 (in Chinese) [徐新河, 肖绍球, 甘月红, 王秉中 2013 62 104101]

    [14]

    Marque's R, Medina F, Rafii-El-Idrissi R 2002 Phys. Rev. E 65 144440

    [15]

    Zhang K Q, Li D J 2007 Electromagnetic Theory for Microwave and Optoelectronics (2nd Ed.) (New York: Berlin Heidelberg) p11

    [16]

    Schurig D, Mock J J, Smith D R 2006 Appl. Phys. Lett. 88 041109

    [17]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [18]

    Sihvola A H 1992 IEEE Trans. Antennas Propag. 40 188

  • [1] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究.  , 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [2] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析.  , 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [3] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究.  , 2021, (): . doi: 10.7498/aps.70.20211312
    [4] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展.  , 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [5] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体.  , 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [6] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器.  , 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [7] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控.  , 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [8] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性.  , 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [9] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数.  , 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [10] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演.  , 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [11] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究.  , 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体.  , 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [14] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质.  , 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [15] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合.  , 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [16] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质.  , 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [17] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究.  , 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [18] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响.  , 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [19] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究.  , 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [20] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法.  , 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
计量
  • 文章访问数:  7067
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-02
  • 修回日期:  2014-09-28
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map