Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-efficiency wavefront control with based on helical metamaterials

Wang Zhao-Kun Yang Zhen-Yu Tao Huan Zhao Ming

Citation:

High-efficiency wavefront control with based on helical metamaterials

Wang Zhao-Kun, Yang Zhen-Yu, Tao Huan, Zhao Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Metamaterials or metasurfaces have been widely studied to manipulate the propagation of light by controlling the wavefront. In previous work, more and more structures were designed to study the reflected or the transmitted light. However, as far as we know, it is rarely reported how to efficiency tailor the wavefront, especially for transmitted light. Helical metamaterial, which has a relatively strong coupling effect among the helical nanowires, may provide an alternative to the wavefront control. In this study, a kind of complementary helical metamaterial with a left-handedness and a right-handedness helixes coupled to each other is proposed. The complementary helical metamaterial has a strong circular conversion dichroism, and it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. Using the finite-difference time-domain method, we find that this kind of helix has a high circular polarization conversion in a broadband, which often implies a high efficiency of the transmitted light. Moreover, it is also found that the structure will introduce a controllable phase shift() between the incident and the transmitted light whose polarizations are orthogonal to each other. By calculating the surface current density of the helix, the performance of high circular polarization conversion is explained. Meanwhile, we also find that the phase shift has a linear relationship with the initial angle of the helix(), which is =2. This relationship can be explained exactly by Jones calculus. According to the generalized Snell's law, the refracted beam can have an arbitrary direction by designing a suitable constant gradient of phase discontinuity. And then, by arranging 12 helixes in an array with a constant phase gradient along the X-axis, the phenomenon of anomalous refraction with a high efficiency(64%) is observed in the near infrared range(1.0-1.4 m). The angle of the anomalous refraction is in good agreement with the theoretical value. Compared with the metasurface, the helical metamaterial has a relatively complex structure. But with the development of the nanotechnology, there are several methods that can complete the propagations of nano helical structures, such as the direct laser writing, the glancing angle deposition, and the molecular self-assembly techniques. And by carefully designing the structure parameters of the helix, this kind of complementary helical metamaterial is expected to be an ideal candidate not only for traditional optics but also for biological detection and medical science.
      Corresponding author: Yang Zhen-Yu, zyang@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61475058), the Wuhan Science and Technology Project, China(Grant No. 2015010101010001), the Shenzhen Basic Research Project, China(Grant No. JCYJ20140419131733980), and the Open Fund of the State Key Laboratory of High Performance Complex Manufacturing, China(Grant No. Kfkt2013-07).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Huang L, Chen X, Muehlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [3]

    Zhao Y, Alu A 2013 Nano Lett. 13 1086

    [4]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394

    [5]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [6]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum Electron. 19 4700423

    [7]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [8]

    Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Phys. Rev. B 85 155457

    [9]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [10]

    Shalaev V M, Cai W S, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2004 Science 305 788

    [11]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [13]

    Zheng G X, Muhlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [14]

    Cheng H, Liu Z C, Chen S Q, Tian J G 2015 Adv. Mater. 27 5410

    [15]

    Kaschke J, Blume L, Wu L, Thiel M, Bade K, Yang Z, Wegener M 2015 Adv. Opt. Mater. 3 1411

    [16]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513

    [17]

    Kaschke J, Wegener M 2015 Opt. Lett. 40 3986

    [18]

    Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C 2004 Rev. Sci. Instrum. 75 1089

    [19]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hoegele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 311

    [20]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609

    [21]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867

    [22]

    Luo X G, Qiu T, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R-Rep. 74 351

    [23]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [24]

    Yang Z Y, Zhao M, Lu P X, Lu Y F 2010 Opt. Lett. 35 2588

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Huang L, Chen X, Muehlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [3]

    Zhao Y, Alu A 2013 Nano Lett. 13 1086

    [4]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394

    [5]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [6]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum Electron. 19 4700423

    [7]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [8]

    Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Phys. Rev. B 85 155457

    [9]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [10]

    Shalaev V M, Cai W S, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2004 Science 305 788

    [11]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [13]

    Zheng G X, Muhlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [14]

    Cheng H, Liu Z C, Chen S Q, Tian J G 2015 Adv. Mater. 27 5410

    [15]

    Kaschke J, Blume L, Wu L, Thiel M, Bade K, Yang Z, Wegener M 2015 Adv. Opt. Mater. 3 1411

    [16]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513

    [17]

    Kaschke J, Wegener M 2015 Opt. Lett. 40 3986

    [18]

    Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C 2004 Rev. Sci. Instrum. 75 1089

    [19]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hoegele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 311

    [20]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609

    [21]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867

    [22]

    Luo X G, Qiu T, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R-Rep. 74 351

    [23]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [24]

    Yang Z Y, Zhao M, Lu P X, Lu Y F 2010 Opt. Lett. 35 2588

  • [1] Wang Zhe-Fei, Wu Jie, Wan Fa-Yu, Zeng Qing-Sheng, Hou Jian-Qiang, Fu Jia-Hui, Wu Qun, Song Ming-Xin, Tayeb A. Denidni. Polarization conversion filter based on electromagnetically induced transparency-like effect. Acta Physica Sinica, 2024, 73(18): 188101. doi: 10.7498/aps.73.20240632
    [2] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] Cui Tie-Jun, Wu Hao-Tian, Liu Shuo. Research progress of information metamaterials. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [4] Jin Ke, Liu Yong-Qiang, Han Jun, Yang Chong-Min, Wang Ying-Hui, Wang Hui-Na. Middle-wave infrared and broadband polarization conversion based on metamaterial. Acta Physica Sinica, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [5] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [6] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Research and design of directional heat transmission structure based on metamaterial. Acta Physica Sinica, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [7] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Design of two-dimensional plate directional heat transmission structure based on meta materials. Acta Physica Sinica, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [8] Deng Zhen-Yu, Weng Le-Chun, Zhang Dong, He Lin-Li, Zhang Lin-Xi. Helical conformation of polymer bottle brushes induced by entropy. Acta Physica Sinica, 2014, 63(1): 018201. doi: 10.7498/aps.63.018201
    [9] Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu. Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure. Acta Physica Sinica, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [10] Wang Wen-Jie, Wang Jia-Fu, Yan Ming-Bao, Lu Lei, Ma Hua, Qu Shao-Bo, Chen Hong-Ya, Xu Cui-Lian. Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances. Acta Physica Sinica, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [11] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [12] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Zhang Jie-Que, Ma Hua. A miniaturized low-frequency polarization-insensitive metamaterial absorber based on broadside-coupled spiral structures. Acta Physica Sinica, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [14] Tong Huan-Ping, Zhang Lin-Xi. The helix transition of semirigid polymer chains confined in cylinders. Acta Physica Sinica, 2012, 61(5): 058701. doi: 10.7498/aps.61.058701
    [15] Li Jun-Cheng, Guo Li-Xin, Liu Song-Hua. Design and simulation of a single-sided left-handed material in THz regime. Acta Physica Sinica, 2012, 61(12): 124102. doi: 10.7498/aps.61.124102
    [16] Su Yan-Yan, Gong Bo-Yi, Zhao Xiao-Peng. Zero-index metamaterial based on double-negative structure. Acta Physica Sinica, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [17] Sun Liang-Kui, Cheng Hai-Feng, Zhou Yong-Jiang, Wang Jun, Pang Yong-Qiang. Design and preparation of a radar-absorbing material based on metamaterial. Acta Physica Sinica, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [18] Zhao Yan, Xiang Jian-Kai, Li Sa, Zhao Xiao-Peng. Visible light metamaterials based on the double-fishnet structure. Acta Physica Sinica, 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [19] Wen Ru-Ming, Li Ling-Yun, Han Ke-Wu, Sun Xiao-Wei. A quick novel experimental method of metamaterial electromagnetic cloaking structure at microwave frequencies. Acta Physica Sinica, 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [20] Fu Fei-Ya, Chen Wei, Zhou Wen-Jun, Liu An-Jin, Xing Ming-Xin, Wang Yu-Fei, Zheng Wan-Hua. Electromagnetic resonance in nanosandwich photonic metamaterial. Acta Physica Sinica, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
Metrics
  • Abstract views:  6801
  • PDF Downloads:  417
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2016
  • Accepted Date:  03 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map