-
超材料是物理和信息领域的研究热点之一, 本文主要介绍信息超材料的研究进展. 不同于传统超材料的等效媒质参数表征, 信息超材料由物理单元的数字编码来描述, 通过控制不同的编码序列来实时地调控电磁波, 进而实现超材料的现场可编程功能. 由于在超材料的物理空间上构筑起数字空间, 因此可在超材料的物理平台上直接处理数字信息, 实现了信息系统微波射频和数字信息处理的统一. 本文系统介绍数字编码超材料、现场可编程超材料及信息超材料的基本概念及其调控电磁波的能力. 结合其数字表征的特点, 重点介绍定量描述信息超材料信息量的信息熵、对波束进行搬移的卷积定理、以及对多个波束进行独立调控的加法定理. 最后, 展示了基于信息超材料的可编程全息成像、新架构微波成像和无线通信系统, 实现了超材料的系统级应用.
Metamaterials are artificial structures composed of subwavelength unit cells in periodic or non-periodic arrays, which are regarded as one of the most important tops in today’s physics and information engineering. Traditional metamaterials are characterized by effective medium theory, in which the array of differently-shaped subwavelength particles can be described as an effective medium with effective permittivity and permeability. The metamaterials allow us to engineer the medium parameters with unusual values, such as negative permittivity and permeability, zero index of refraction, etc. In 2014, Cui et al. (Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218) proposed the concept of information metamaterial, which is a digital version of the metamaterial with each unit cell described by digital codes representing different reflection/refraction phases. The direct connection between information metamaterials and digital logic devices allows the dynamic controlling of the electromagnetic (EM) waves by real-time programming the digital states of each unit cell in the information metamaterials with preloaded digital coding sequences. As information metamaterials build up a digital world (digital coding information) directly in the physical world, digital information can be processed on the information metamaterials directly without any intermediate conversion process, thus realizing the unification of microwave engineering and digital processing. In this paper, we review the recent developments of digital coding metamaterials, programmable metamaterials, and information metamaterials, mainly focusing on their basic concepts, working mechanisms, experimental realizations, and system-level applications. Firstly, we introduce the concepts of digital coding and programmable metamaterials and present their advantages to realize the dynamic controlling of EM waves at low cost. The working mechanisms of isotropic, anisotropic, and tensor digital coding metamaterials are described, following the first prototype of the programmable metamaterial. Then we introduce the concept of information entropy for the information metamaterial and reveal the connection between the amount of information carried by the coding pattern and the radiated field of the information metamaterial. Convolution operation and addition theorem are further presented to show their powerful manipulations of EM wave in generating arbitrary beam patterns pointing to arbitrary directions. Finally, we introduce three representative system-level applications of information metamaterials, including a reprogrammable hologram imaging system which can dynamically project different microwave images at the imaging plane through the preloaded coding sequences stored in field programmable gate array (FPGA), a machine-learning reprogrammable metasurface imager that can be trained in-situ to produce high-quality images and high-accuracy object recognition in the real case at low cost, and directly digital wireless communication systems, in which the digital information is directly processed and radiated to free space by using the information metamaterial and FPGA. The information metamaterials are currently advancing towards higher frequencies (millimeter waves, terahertz, and infrared) to have higher capacity of information, and are becoming more “intelligent” with the combination of many advanced algorithms in computer science. We believe that the future information metamaterials possess signatures of self-sensing, self-learning, self-adaptive, and self-decision. -
Keywords:
- metamaterial /
- information metamaterial /
- digital coding /
- information system
[1] Veselago V G 1968 Sov. Phys. Uspekhi. 10 509
Google Scholar
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[3] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
Google Scholar
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
Google Scholar
[5] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
Google Scholar
[6] Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609
Google Scholar
[7] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
Google Scholar
[8] Shin H, Fan S H 2006 Phys. Rev. Lett. 96 239903
Google Scholar
[9] Leonhardt U 2006 Science 312 1777
Google Scholar
[10] Liu R P, Cui T J, Huang D, Zhao B, Smith D R 2007 Phys. Rev. E 76 026606
Google Scholar
[11] Magnus F, Wood B, Moore J, Morrison K, Perkins G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295
Google Scholar
[12] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
Google Scholar
[13] Cui T J, Smith D R, Liu R P 2009 Metamaterials: Theory, Design, and Applications (New York: Springer Science & Business Media)
[14] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101
Google Scholar
[15] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867
Google Scholar
[16] Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006
Google Scholar
[17] Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903
Google Scholar
[18] Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902
Google Scholar
[19] Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403
Google Scholar
[20] Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903
Google Scholar
[21] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
Google Scholar
[22] Ma H F, Cui T J 2010 Nat. Commun. 1 21
Google Scholar
[23] Ma H F, Cui T J 2010 Nat. Commun. 1 124
Google Scholar
[24] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932
Google Scholar
[25] Chen X Z, Huang L L, Mühlenbernd H, Li G X, Bai B F, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nat. Commun. 3 1198
Google Scholar
[26] Wang Q, Zhang X, Xu Y, Tian Z, Gu J, Yue W, Zhang S, Han J, Zhang W 2015 Adv. Opt. Mater. 3 779
Google Scholar
[27] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X 2010 Nat. Commun. 1 143
Google Scholar
[28] Jiang W X, Qiu C W, Han T C, Cheng Q, Ma H F, Zhang S, Cui T J 2013 Adv. Mater. 25 6963
Google Scholar
[29] Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702
Google Scholar
[30] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[31] Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308
Google Scholar
[32] Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807
Google Scholar
[33] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I, Liao Y C, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano. Lett. 14 225
Google Scholar
[34] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S, Chen X 2015 Nat. Commun. 6 8241
Google Scholar
[35] Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T 2015 Adv. Mater. 27 6444
Google Scholar
[36] Ye W, Zeuner F, Li X, Reineke B, He S, Qiu C W, Liu J, Wang Y, Zhang S, Zentgraf T 2016 Nat. Commun. 7 11930
Google Scholar
[37] Sun S L, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[38] Li G, Kang M, Chen S, Zhang S, Pun E Y B, Cheah K W, Li J 2013 Nano Lett. 13 4148
Google Scholar
[39] Karimi E, Schulz S A, Leon I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 e167
Google Scholar
[40] Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876
Google Scholar
[41] Mehmood M Q, Mei S, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T, Ling X, Liu H, Teng J, Danner A, Zhang S, Qiu C W 2016 Adv. Mater. 28 2533
Google Scholar
[42] Berry M V 1987 J. Mod. Opt. 34 1401
Google Scholar
[43] Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141
Google Scholar
[44] Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, Lustrac A, Wu Q, Qiu C W, Alu A 2015 Adv. Mater. 27 1195
Google Scholar
[45] Tymchenko M, Gomez D J S, Lee J, Nookala N, Belkin M A, Alu A 2015 Phys. Rev. Lett. 115 207403
Google Scholar
[46] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513
Google Scholar
[47] Zhao Y, Belkin M A, Alu A 2012 Nat. Commun. 3 870
Google Scholar
[48] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
Google Scholar
[49] Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491
Google Scholar
[50] Jia S L, Wan X, Bao D, Zhao Y J, Cui T J 2015 Laser Photonics Rev. 9 545
Google Scholar
[51] Della G C, Engheta N 2014 Nat. Mater. 13 1115
Google Scholar
[52] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218
Google Scholar
[53] Xie B, Tang K, Cheng H, Liu Z, Chen S, Tian J 2017 Adv. Mater. 29 1603507
Google Scholar
[54] Wang Z, Zhang Q, Zhang K, Hu G 2016 Adv. Mater. 28 9857
Google Scholar
[55] Gao L H, Cheng Q, Yang J, et al. 2015 Light-Sci. Appl. 4 e324
Google Scholar
[56] Ma Q, Shi C B, Bai G D, Chen T Y, Noor A, Cui T J 2017 Adv. Opt. Mater. 5 1700548
Google Scholar
[57] Zhang L, Liu S, Li L, Cui T J 2017 ACS Appl. Mater. Inter. 9 36447
Google Scholar
[58] Liu S, Cui T J, Xu Q, et al. 2016 Light-Sci. Appl. 5 e16076
Google Scholar
[59] Liu S, Zhang H C, Zhang L, et al. 2017 ACS Appl. Mater. Inter. 9 21503
Google Scholar
[60] Wan X, Qi M Q, Chen T Y, Cui T J 2016 Sci. Rep. 6 20663
Google Scholar
[61] Cui T J, Liu S, Zhang L 2017 J. Mater. Chem. C 5 3644
Google Scholar
[62] Cui T J, Liu S, Li L 2016 Light-Sci. Appl. 5 e16172
Google Scholar
[63] Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156
Google Scholar
[64] Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236
Google Scholar
[65] Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197
Google Scholar
[66] Li Y B, Li L L, Xu B B, Wu W, Wu R Y, Wan X, Cheng Q Cui T J 2016 Sci. Rep. 6 23731
Google Scholar
[67] Li L, Hurtado M, Xu F, Zhang B C, Jin T, Cui T J, Stevanovic M N, Nehorai A 2018 Found. Trends Signal Process. 12 107
Google Scholar
[68] Li L L, Ruan H X, Liu C, Li Y, Shuang Y, Alu A, Qiu C W, Cui T J 2019 Nat. Commun. 10 1082
Google Scholar
[69] Cui T J, Liu S, Bai G D, Ma Q 2019 Research 2019 2584509
Google Scholar
[70] Wan X, Zhang Q, Chen T Y, Zhang L, Xu W, He H, Xiao C K, Xiao Q, Cui T J 2019 Light-Sci. Appl. 8 60
Google Scholar
[71] Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alu A, Cui T J 2019 Nat. Sci. Rev. 6 231
Google Scholar
[72] Dai J Y, Zhao J, Cheng Q, Cui T J 2018 Light-Sci. Appl. 7 90
Google Scholar
[73] Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Tech. 4 1900044
Google Scholar
[74] Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 417
Google Scholar
[75] Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 360
Google Scholar
[76] Dai J Y, Tang W, Yang L X, Li X, Chen M Z, Ke J C, Cheng Q, Jin S, Cui T J 2019 IEEE. T. Antenn. Propag. 6 7
Google Scholar
[77] Tang W, Li X, Dai J Y, Jin S, Zeng Y, Cheng Q, Cui T J 2019 China Commun. 16 46
[78] Basar E, Renzo M D, Rosny J D, Debbah M, Alouini M, Zhang R 2019 IEEE Access 7 116753
Google Scholar
[79] [80] Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, Cui T J 2019 IEEE Trans. Wirel. Commun. 27 180
Google Scholar
[81] Bao L, Ma Q, Bai G D, Jing H B, Wu R Y, Yang C, Wu J, Fu X, Cui T J 2018 Appl. Phys. Lett. 113 063502
Google Scholar
[82] Luo J, Ma Q, Jing H B, Bai G D, Wu R Y, Bao L, Cui T J 2019 J. App. Phys. 126 113102
Google Scholar
[83] Zhang L, Chen X Q, Liu S, et al. 2018 Nat. Commun. 9 4334
Google Scholar
[84] Zhang L, Chen X Q, Shao R W, Dai J Y, Cheng Q, Castaldi G, Galdi V, Cui T J 2019 Adv. Mater. 31 1904069
Google Scholar
[85] Chen L, Ma Q, Jing H B, Cui H Y, Liu Y, Cui T J 2019 Phys. Rev. Appl. 11 054051
Google Scholar
[86] Luo Z, Chen M Z, Wang Z X, Zhou L, Wang Q, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635
Google Scholar
[87] Luo Z J, Wang Q, Zhang X G, et al. 2019 Adv. Opt. Mater. 7 1900792
Google Scholar
[88] Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028
Google Scholar
[89] Wang Q, Zhang X G, Tian H W, et al. 2019 Adv. Theory Simul. 2 1900141
Google Scholar
[90] Zhang X G, Jiang W X, Jiang H L, et al. 2020 Nat. Electron. 3 165
Google Scholar
[91] Ma Q, Bai G D, Jing H B, Yang C, Li L, Cui T J 2019 Light-Sci. Appl. 8 98
Google Scholar
[92] Li L, Shuang Y, Ma Q, Li H, Zhao H, Wei M, Liu C, Hao C, Qiu C W, Cui T J 2019 Light-Sci. Appl. 8 97
Google Scholar
[93] Li H Y, Zhao H T, Wei M L, Ruan H X, Shuang Y, Cui T J, Li L 2020 Patterns 1 100006
Google Scholar
[94] Cui T J 2017 J. Opt. 19 084004
Google Scholar
[95] Cui T J 2018 Nat. Sci. Rev. 5 134
Google Scholar
-
图 1 等效媒质超材料的数字化[51] (a) 等效媒质超材料的离散化和数字化过程; (b) 给定介电常数函数的取样和离散化, 并用两个超材料单元来设计
Fig. 1. Digitization of effective-medium metamaterial[51]: (a) Discretizing and digitizing processes of effective-medium metamaterial; (b) sampling, discretizing, and digitizing a required permittivity function using two metamaterial bits as building blocks.
图 2 超材料的数字编码表征及数字编码超材料[52] (a) 数字编码超材料; (b) 数字0和1单元的物理实现及其相位响应; (c), (d) 不同数字编码序列下的电磁响应, 展示出完全不同的功能
Fig. 2. Digital coding representation of metamaterials[52]: (a) Digital coding metamaterial; (b) the physical implementations of digital units 0 and 1 and their phase responses; (c), (d) electromagnetic responses under different digital coding sequences, showing different functions.
图 3 数字超材料与现场可编程超材料[52] (a) 动态可调的数字编码超单元; (b) 数字0和1状态下的相位响应; (c) FPGA驱动下的现场可编程超材料; (d) 不同编码序列下的可编程功能
Fig. 3. Digital metamaterial and programmable metamaterial[52]: (a) An active digital meta-atom; (b) the phase responses of the active digital meta-atom under the 0 and 1 states; (c) a programmable metamaterial controlled by FPGA; (d) the measured programmable functions under different digital coding sequences.
图 4 信息超材料的信息熵[62] (a) 随机0和1数字编码; (b), (c) 随机0和1数字编码超材料的远场方向图; (d) 数字编码序列由有序到无序时的几何信息熵和物理信息熵
Fig. 4. Information entropy of information metamaterials [62]: (a) The random 0 and 1 coding pattern; (b), (c) the far-field radiation patterns of the random 0 and 1 digital coding metamaterial; (d) the geometric information entropy and physical information entropy of the digital coding sequences from order to disorder.
图 5 基于信息超材料的数字卷积定理[63] (a)−(c) 三种不同的数字编码图案, 其中(a)与(b)相加得到(c); (d)−(f) 相应数字编码图案的远场方向图, 实现方向图搬移; (g)−(i) 类比于信号处理中的频谱搬移
Fig. 5. Digital convolution theorem based on the information metamaterials[63]: (a)−(c) Three different digital coding patterns, where (c) is obtained by adding (a) and (b); (d)−(f) the far field patterns of the corresponding digital coding patterns, showing the shift property of radiation beam; (g)−(i) the spectrum shift property in the digital signal processing.
图 7 可编程实时微波成像系统[68] (a)机器学习成像系统可根据不同场景进行优化; (b)训练可编程成像系统示意图; (c) 2比特数字编码超材料及其对一个运动目标的实时成像示意图和测量结果
Fig. 7. Real-time digital-metasurface imager[68]: (a) The machine-learning metasurface imager can be optimized for different kinds of scenes; (b) the illustration of training the reprogrammable imager; (c) the map of 2-bit coding digital metasurface, and the illustration of real-time imaging a moving person behind a wall, as well as measurement results.
图 9 自适应超材料[91] (a) 自适应超材料的示意图; (b) 自适应超材料的闭环系统, 由现场可编程超材料、FPGA、传感器和自适应算法所组成
Fig. 9. . The self-adaptive metamaterial[91]: (a) An illustrative example; (b) the closed-loop system of the self-adaptive metamaterial, which includes a programmable metamaterial, an FPGA, a sensor, and a microcontroller unit loaded with the fast feedback algorithm.
-
[1] Veselago V G 1968 Sov. Phys. Uspekhi. 10 509
Google Scholar
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[3] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
Google Scholar
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
Google Scholar
[5] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
Google Scholar
[6] Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609
Google Scholar
[7] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
Google Scholar
[8] Shin H, Fan S H 2006 Phys. Rev. Lett. 96 239903
Google Scholar
[9] Leonhardt U 2006 Science 312 1777
Google Scholar
[10] Liu R P, Cui T J, Huang D, Zhao B, Smith D R 2007 Phys. Rev. E 76 026606
Google Scholar
[11] Magnus F, Wood B, Moore J, Morrison K, Perkins G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295
Google Scholar
[12] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
Google Scholar
[13] Cui T J, Smith D R, Liu R P 2009 Metamaterials: Theory, Design, and Applications (New York: Springer Science & Business Media)
[14] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101
Google Scholar
[15] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867
Google Scholar
[16] Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006
Google Scholar
[17] Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903
Google Scholar
[18] Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902
Google Scholar
[19] Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403
Google Scholar
[20] Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903
Google Scholar
[21] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
Google Scholar
[22] Ma H F, Cui T J 2010 Nat. Commun. 1 21
Google Scholar
[23] Ma H F, Cui T J 2010 Nat. Commun. 1 124
Google Scholar
[24] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932
Google Scholar
[25] Chen X Z, Huang L L, Mühlenbernd H, Li G X, Bai B F, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nat. Commun. 3 1198
Google Scholar
[26] Wang Q, Zhang X, Xu Y, Tian Z, Gu J, Yue W, Zhang S, Han J, Zhang W 2015 Adv. Opt. Mater. 3 779
Google Scholar
[27] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X 2010 Nat. Commun. 1 143
Google Scholar
[28] Jiang W X, Qiu C W, Han T C, Cheng Q, Ma H F, Zhang S, Cui T J 2013 Adv. Mater. 25 6963
Google Scholar
[29] Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702
Google Scholar
[30] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[31] Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308
Google Scholar
[32] Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807
Google Scholar
[33] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I, Liao Y C, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano. Lett. 14 225
Google Scholar
[34] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S, Chen X 2015 Nat. Commun. 6 8241
Google Scholar
[35] Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T 2015 Adv. Mater. 27 6444
Google Scholar
[36] Ye W, Zeuner F, Li X, Reineke B, He S, Qiu C W, Liu J, Wang Y, Zhang S, Zentgraf T 2016 Nat. Commun. 7 11930
Google Scholar
[37] Sun S L, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[38] Li G, Kang M, Chen S, Zhang S, Pun E Y B, Cheah K W, Li J 2013 Nano Lett. 13 4148
Google Scholar
[39] Karimi E, Schulz S A, Leon I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 e167
Google Scholar
[40] Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876
Google Scholar
[41] Mehmood M Q, Mei S, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T, Ling X, Liu H, Teng J, Danner A, Zhang S, Qiu C W 2016 Adv. Mater. 28 2533
Google Scholar
[42] Berry M V 1987 J. Mod. Opt. 34 1401
Google Scholar
[43] Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141
Google Scholar
[44] Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, Lustrac A, Wu Q, Qiu C W, Alu A 2015 Adv. Mater. 27 1195
Google Scholar
[45] Tymchenko M, Gomez D J S, Lee J, Nookala N, Belkin M A, Alu A 2015 Phys. Rev. Lett. 115 207403
Google Scholar
[46] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513
Google Scholar
[47] Zhao Y, Belkin M A, Alu A 2012 Nat. Commun. 3 870
Google Scholar
[48] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
Google Scholar
[49] Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491
Google Scholar
[50] Jia S L, Wan X, Bao D, Zhao Y J, Cui T J 2015 Laser Photonics Rev. 9 545
Google Scholar
[51] Della G C, Engheta N 2014 Nat. Mater. 13 1115
Google Scholar
[52] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218
Google Scholar
[53] Xie B, Tang K, Cheng H, Liu Z, Chen S, Tian J 2017 Adv. Mater. 29 1603507
Google Scholar
[54] Wang Z, Zhang Q, Zhang K, Hu G 2016 Adv. Mater. 28 9857
Google Scholar
[55] Gao L H, Cheng Q, Yang J, et al. 2015 Light-Sci. Appl. 4 e324
Google Scholar
[56] Ma Q, Shi C B, Bai G D, Chen T Y, Noor A, Cui T J 2017 Adv. Opt. Mater. 5 1700548
Google Scholar
[57] Zhang L, Liu S, Li L, Cui T J 2017 ACS Appl. Mater. Inter. 9 36447
Google Scholar
[58] Liu S, Cui T J, Xu Q, et al. 2016 Light-Sci. Appl. 5 e16076
Google Scholar
[59] Liu S, Zhang H C, Zhang L, et al. 2017 ACS Appl. Mater. Inter. 9 21503
Google Scholar
[60] Wan X, Qi M Q, Chen T Y, Cui T J 2016 Sci. Rep. 6 20663
Google Scholar
[61] Cui T J, Liu S, Zhang L 2017 J. Mater. Chem. C 5 3644
Google Scholar
[62] Cui T J, Liu S, Li L 2016 Light-Sci. Appl. 5 e16172
Google Scholar
[63] Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156
Google Scholar
[64] Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236
Google Scholar
[65] Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197
Google Scholar
[66] Li Y B, Li L L, Xu B B, Wu W, Wu R Y, Wan X, Cheng Q Cui T J 2016 Sci. Rep. 6 23731
Google Scholar
[67] Li L, Hurtado M, Xu F, Zhang B C, Jin T, Cui T J, Stevanovic M N, Nehorai A 2018 Found. Trends Signal Process. 12 107
Google Scholar
[68] Li L L, Ruan H X, Liu C, Li Y, Shuang Y, Alu A, Qiu C W, Cui T J 2019 Nat. Commun. 10 1082
Google Scholar
[69] Cui T J, Liu S, Bai G D, Ma Q 2019 Research 2019 2584509
Google Scholar
[70] Wan X, Zhang Q, Chen T Y, Zhang L, Xu W, He H, Xiao C K, Xiao Q, Cui T J 2019 Light-Sci. Appl. 8 60
Google Scholar
[71] Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alu A, Cui T J 2019 Nat. Sci. Rev. 6 231
Google Scholar
[72] Dai J Y, Zhao J, Cheng Q, Cui T J 2018 Light-Sci. Appl. 7 90
Google Scholar
[73] Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Tech. 4 1900044
Google Scholar
[74] Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 417
Google Scholar
[75] Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 360
Google Scholar
[76] Dai J Y, Tang W, Yang L X, Li X, Chen M Z, Ke J C, Cheng Q, Jin S, Cui T J 2019 IEEE. T. Antenn. Propag. 6 7
Google Scholar
[77] Tang W, Li X, Dai J Y, Jin S, Zeng Y, Cheng Q, Cui T J 2019 China Commun. 16 46
[78] Basar E, Renzo M D, Rosny J D, Debbah M, Alouini M, Zhang R 2019 IEEE Access 7 116753
Google Scholar
[79] [80] Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, Cui T J 2019 IEEE Trans. Wirel. Commun. 27 180
Google Scholar
[81] Bao L, Ma Q, Bai G D, Jing H B, Wu R Y, Yang C, Wu J, Fu X, Cui T J 2018 Appl. Phys. Lett. 113 063502
Google Scholar
[82] Luo J, Ma Q, Jing H B, Bai G D, Wu R Y, Bao L, Cui T J 2019 J. App. Phys. 126 113102
Google Scholar
[83] Zhang L, Chen X Q, Liu S, et al. 2018 Nat. Commun. 9 4334
Google Scholar
[84] Zhang L, Chen X Q, Shao R W, Dai J Y, Cheng Q, Castaldi G, Galdi V, Cui T J 2019 Adv. Mater. 31 1904069
Google Scholar
[85] Chen L, Ma Q, Jing H B, Cui H Y, Liu Y, Cui T J 2019 Phys. Rev. Appl. 11 054051
Google Scholar
[86] Luo Z, Chen M Z, Wang Z X, Zhou L, Wang Q, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635
Google Scholar
[87] Luo Z J, Wang Q, Zhang X G, et al. 2019 Adv. Opt. Mater. 7 1900792
Google Scholar
[88] Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028
Google Scholar
[89] Wang Q, Zhang X G, Tian H W, et al. 2019 Adv. Theory Simul. 2 1900141
Google Scholar
[90] Zhang X G, Jiang W X, Jiang H L, et al. 2020 Nat. Electron. 3 165
Google Scholar
[91] Ma Q, Bai G D, Jing H B, Yang C, Li L, Cui T J 2019 Light-Sci. Appl. 8 98
Google Scholar
[92] Li L, Shuang Y, Ma Q, Li H, Zhao H, Wei M, Liu C, Hao C, Qiu C W, Cui T J 2019 Light-Sci. Appl. 8 97
Google Scholar
[93] Li H Y, Zhao H T, Wei M L, Ruan H X, Shuang Y, Cui T J, Li L 2020 Patterns 1 100006
Google Scholar
[94] Cui T J 2017 J. Opt. 19 084004
Google Scholar
[95] Cui T J 2018 Nat. Sci. Rev. 5 134
Google Scholar
计量
- 文章访问数: 20280
- PDF下载量: 1152
- 被引次数: 0