搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超材料微波磁导率色散行为的电可调控性研究

钟顺林 韩满贵 邓龙江

引用本文:
Citation:

超材料微波磁导率色散行为的电可调控性研究

钟顺林, 韩满贵, 邓龙江

Electric tunability of microwave permeability dispersion behaviors of metamaterials

Zhong Shun-Lin, Han Man-Gui, Deng Long-Jiang
PDF
导出引用
  • 研究在开口金属谐振环(SRR)结构嵌入一个电容二极管后,通过电压调控二极管的电容使得SRR结构的等效电容值发生改变,能实现对SRR的谐振频率和等效磁导率的调控,从而提出了一种智能的微波磁性超材料结构.采用时域差分有限元法(Finite-Difference Time-Domain)和恢复算法模拟了变容二极管的工作电压变化下,SRR结构谐振频率和磁导率的变化规律.研究结果表明工作电压增大使变容二极管的电容值减小时,将导致SRR结构的谐振频率向低频段移动,其磁导率的共振频率也将向低频移动.最后指出了SRR结构与常规磁性材料(如铁氧体)磁导率色散行为的不同之处.
    By embedding a capacity-variable diode into a split ring resonator (SRR), it is found that the effective capacitance of such an SRR element can be varied by the biased voltage of diode. Therefore the resonance frequency and effective permeability of an SRR element can be tuned. Based on these results, a smart microwave magnetic metamaterial is proposed. Employing the finite-difference time-domain and retrieval method, the variations of resonance frequency and permeability of the SRR element are simulated and calculated by changing the biased voltage. It is found that with the decrease of capacitance due to the increase of biased voltage, the resonance frequencies are shifted towards lower values, and so are the resonance frequencies of permeability dispersion. Finally, the difference in permeability dispersion behavior between SRR structure and natural magnetic material (for instance, ferrite) has been pointed out.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB334702)、国防预先研究基金项目(批准号:9140A10030409DZ0228)、国家基金杰出青年基金项目(批准号:51025208)和中央高校基本科研业务费(批准号:ZYGX2009J036)资助的课题.
    [1]

    Wang X, Zheng F, Liu Z Y, Liu X X, Wei D, Wei F L 2009 J. Appl. Phys. 105 07B714

    [2]

    Ledieu M, Schoenstein F, Le Gallou J H, Valls O, Queste S, Duverger F, Acher O 2003 J. Appl. Phys. 93 7202

    [3]
    [4]
    [5]

    Xie J L, Han M G, Chen L, Kuang R X, Deng L J 2007 J. Magn. Magn. Mater. 314 37

    [6]

    Kim S S, Kim S T, Yoon Y C, Lee K S 2005 J. Appl. Phys. 97 10F905

    [7]
    [8]

    Deng L J, Han M G 2007 Appl. Phys. Lett. 91 023119

    [9]
    [10]
    [11]

    Lubitz P, Rachford F J 2002 J. Appl. Phys. 91 7613

    [12]

    Chen W B, Han M G, Deng L J 2010 Acta Phys. Sin. 60 712 (in Chinese) [陈文兵、韩满贵、邓龙江 2010 60 712]

    [13]
    [14]
    [15]

    Li Z W, Chen L F, Ong C K 2003 J. Appl. Phys. 94 5918

    [16]

    Tsutaoka T 2003 J. Appl. Phys. 93 2789

    [17]
    [18]
    [19]

    Li B W, Shen Y, Yue Z X, Nan C W 2007 J. Magn. Magn. Mater. 313 322

    [20]
    [21]

    Lagarkov A N, Rozanov K N, Simonov N A, Starostenko S S 2005 Handbook of Advanced Magnetic Materials (Beijing: Tsinghua University Press), Vol. 4, pp414-445

    [22]

    Han M G, Lu H P, Deng L J 2010 Appl. Phys. Lett. 97 192507

    [23]
    [24]

    Han M G, Ou Y, Liang D F, Deng L J 2009 Chin. Phys. B 18 1261

    [25]
    [26]
    [27]

    Lee J J, Bae S, Hong Y K, Jalli J, Abo G S, Seong W M, Park S H, Choi C J, Lee J G 2009 J. Appl. Phys. 105 07A514

    [28]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [29]
    [30]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [31]
    [32]
    [33]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [34]
    [35]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett.76 4733

    [36]
    [37]

    Fu F Y, Chen W, Zhou W J, Liu A J, Xing M X, Wang Y F, Zheng W H 2010 Acta Phys. Sin. 59 8579 (in Chinese) [付非亚、陈 微、周文君、刘安金、邢名欣、王宇飞、郑婉华 2010 物 理学报 59 8579]

    [38]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nature Mater. 8 867

    [39]
    [40]
    [41]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [42]

    Xiang J K, Ma Z H, Zhao Y, Zhao X P 2010 Acta Phys. Sin. 59 4023 (in Chinese) [相建凯、马忠洪、赵 延、赵晓鹏 2010 59 4023]

    [43]
    [44]

    Wen R M, Li L Y, Han K W, Sun X W 2010 Acta Phys. Sin. 59 4607 (in Chinese)[闻孺铭、李凌云、韩克武、孙晓玮 2010 59 4607]

    [45]
    [46]

    Tang N J, Zhong W, Au C, Yang Y, Han M G, Lin K J, Du Y W 2008 J. Phys. Chem. C 112 19316

    [47]
    [48]

    Lian L X, Deng L J, Han M, Tang W, Feng S D 2007 J. Appl. Phys.101 09M520

    [49]
    [50]

    Zhao Q, Kang L, Du B, Li B, Zhou J 2007 Appl. Phys. Lett. 90 011112

    [51]
    [52]
    [53]

    Hand T H, Gollub J, Sajuyigbe S, Cummer S A, Smith D R 2009 Appl. Phys. Lett. 93 212504

    [54]
    [55]
    [56]

    Ai F, Bai Y, Xu F, Qiao L J, Zhou J 2008 Acta Phys. Sin. 57 4189(in Chinese)[艾 芬、白 洋、徐 芳、乔利杰、周 济 2008 57 4189]

    [57]

    Wang M Y 2008 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese) [王茂琰 2008 博士学位论文(成都:电子科技大学)]

    [58]
    [59]

    Smith D R, Vier D C, Koschny Th, Soukoulis C M 2005 Phys. Rev. Lett.71 036617

    [60]
    [61]
    [62]

    Chen X D, Tomasz M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. Lett. 70 016608

    [63]
    [64]

    Chen X D 2005 Ph. D. Dissertation (Hangzhou:Zhejiang University) (in Chinese)[陈旭东2005 博士学位论文(杭州:浙江大学)]

  • [1]

    Wang X, Zheng F, Liu Z Y, Liu X X, Wei D, Wei F L 2009 J. Appl. Phys. 105 07B714

    [2]

    Ledieu M, Schoenstein F, Le Gallou J H, Valls O, Queste S, Duverger F, Acher O 2003 J. Appl. Phys. 93 7202

    [3]
    [4]
    [5]

    Xie J L, Han M G, Chen L, Kuang R X, Deng L J 2007 J. Magn. Magn. Mater. 314 37

    [6]

    Kim S S, Kim S T, Yoon Y C, Lee K S 2005 J. Appl. Phys. 97 10F905

    [7]
    [8]

    Deng L J, Han M G 2007 Appl. Phys. Lett. 91 023119

    [9]
    [10]
    [11]

    Lubitz P, Rachford F J 2002 J. Appl. Phys. 91 7613

    [12]

    Chen W B, Han M G, Deng L J 2010 Acta Phys. Sin. 60 712 (in Chinese) [陈文兵、韩满贵、邓龙江 2010 60 712]

    [13]
    [14]
    [15]

    Li Z W, Chen L F, Ong C K 2003 J. Appl. Phys. 94 5918

    [16]

    Tsutaoka T 2003 J. Appl. Phys. 93 2789

    [17]
    [18]
    [19]

    Li B W, Shen Y, Yue Z X, Nan C W 2007 J. Magn. Magn. Mater. 313 322

    [20]
    [21]

    Lagarkov A N, Rozanov K N, Simonov N A, Starostenko S S 2005 Handbook of Advanced Magnetic Materials (Beijing: Tsinghua University Press), Vol. 4, pp414-445

    [22]

    Han M G, Lu H P, Deng L J 2010 Appl. Phys. Lett. 97 192507

    [23]
    [24]

    Han M G, Ou Y, Liang D F, Deng L J 2009 Chin. Phys. B 18 1261

    [25]
    [26]
    [27]

    Lee J J, Bae S, Hong Y K, Jalli J, Abo G S, Seong W M, Park S H, Choi C J, Lee J G 2009 J. Appl. Phys. 105 07A514

    [28]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [29]
    [30]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [31]
    [32]
    [33]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [34]
    [35]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett.76 4733

    [36]
    [37]

    Fu F Y, Chen W, Zhou W J, Liu A J, Xing M X, Wang Y F, Zheng W H 2010 Acta Phys. Sin. 59 8579 (in Chinese) [付非亚、陈 微、周文君、刘安金、邢名欣、王宇飞、郑婉华 2010 物 理学报 59 8579]

    [38]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nature Mater. 8 867

    [39]
    [40]
    [41]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [42]

    Xiang J K, Ma Z H, Zhao Y, Zhao X P 2010 Acta Phys. Sin. 59 4023 (in Chinese) [相建凯、马忠洪、赵 延、赵晓鹏 2010 59 4023]

    [43]
    [44]

    Wen R M, Li L Y, Han K W, Sun X W 2010 Acta Phys. Sin. 59 4607 (in Chinese)[闻孺铭、李凌云、韩克武、孙晓玮 2010 59 4607]

    [45]
    [46]

    Tang N J, Zhong W, Au C, Yang Y, Han M G, Lin K J, Du Y W 2008 J. Phys. Chem. C 112 19316

    [47]
    [48]

    Lian L X, Deng L J, Han M, Tang W, Feng S D 2007 J. Appl. Phys.101 09M520

    [49]
    [50]

    Zhao Q, Kang L, Du B, Li B, Zhou J 2007 Appl. Phys. Lett. 90 011112

    [51]
    [52]
    [53]

    Hand T H, Gollub J, Sajuyigbe S, Cummer S A, Smith D R 2009 Appl. Phys. Lett. 93 212504

    [54]
    [55]
    [56]

    Ai F, Bai Y, Xu F, Qiao L J, Zhou J 2008 Acta Phys. Sin. 57 4189(in Chinese)[艾 芬、白 洋、徐 芳、乔利杰、周 济 2008 57 4189]

    [57]

    Wang M Y 2008 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese) [王茂琰 2008 博士学位论文(成都:电子科技大学)]

    [58]
    [59]

    Smith D R, Vier D C, Koschny Th, Soukoulis C M 2005 Phys. Rev. Lett.71 036617

    [60]
    [61]
    [62]

    Chen X D, Tomasz M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. Lett. 70 016608

    [63]
    [64]

    Chen X D 2005 Ph. D. Dissertation (Hangzhou:Zhejiang University) (in Chinese)[陈旭东2005 博士学位论文(杭州:浙江大学)]

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管.  , 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [5] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [6] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管.  , 2021, (): . doi: 10.7498/aps.70.20211291
    [7] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展.  , 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [8] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究.  , 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [9] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控.  , 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [10] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究.  , 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [11] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [12] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用.  , 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [13] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料.  , 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [14] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [15] 赵延, 相建凯, 李飒, 赵晓鹏. 基于双鱼网结构的可见光波段超材料.  , 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [16] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备.  , 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [17] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应.  , 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [18] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究.  , 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [19] 闻孺铭, 李凌云, 韩克武, 孙晓玮. 微波超材料隐形结构及其新型快速实验方案.  , 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [20] 别少伟, 江建军, 马 强, 杜 刚, 袁 林, 邸永江, 冯则坤, 何华辉. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率.  , 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
计量
  • 文章访问数:  9035
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-09
  • 修回日期:  2011-02-28
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map