-
In this paper, we discuss the dark signal increase in complementary metal oxide semiconductor (CMOS) active pixel sensor due to proton-induced damage, and present the basic mechanism that may cause failure. When the fluence of protons reaches a predetermined point, the change of dark signal of the device is measured offline. The experimental result shows that as the fluence of protons increases, mean dark signal increases rapidly. The main reason for dark signal degradation is: 1) the ionizing damage causes a build-up of oxide trapped charge and interface state at the Si-SiO2 interface. The creation of the interface traps (with energy levels within the silicon bandgap), which can communicate with carriers in the silicon, gives rise to the thermal generation of the electron-hole pairs and, hence increasing the dark signals; 2) when protons pass through the sensor, there is a possibility of collisions with silicon lattice atoms in the bulk silicon. In these collisions, atoms can be displaced from their lattice sites and defects are formed. These resulting defects can give rise to states with energy levels within the forbidden bandgap. The increasing of dark signal is therefore one of the prominent consequences of bulk displacement. We use multi-layered shielding simulation software to calculate the ionization damage dose and displacement damage dose. Based on the comparison of the test data of gamma radiation, combined with the device structure and process parameters, a theoretical model for separation proton-induced ionization and displacement damage effects on CMOS active pixel is constructed, and the degradation mechanism of the mean dark signal is investigated. The result shows that the contribution of ionization effect induced surface dark signal and the contribution of displacement damage induced bulk dark signal to dark signal degradation of the whole device are roughly equal in this domestic CMOS active pixel.
-
Keywords:
- complementary metal oxide semiconductor active pixel sensor /
- dark signal /
- proton radiation /
- displacement effect
[1] Dai S W, Jia Y Z, Zhang B M, Wu J, Sun H X, Liu E H, Wei J Y, Chen B, Huang C N, Xue C B, Yang J F, Fang G Y, Wang J Y, Wang H Y, An J S 2014 Sci. China Technol. Sin. 44 361 (in Chinese) [代树武, 贾瑛卓, 张宝明, 吴季, 孙辉先, 刘恩海, 魏建彦, 陈波, 黄长宁, 薛长斌, 杨建峰, 方广有, 王建宇, 王焕玉, 安军社 2014 中国科学 技术科学 44 361]
[2] Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102 (in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 63 056102]
[3] Zhang X F, Li Y D, Guo Q, Luo M C, He C F, Yu X, Shen Z H, Zhang X Y, Deng W, Wu Z X 2013 Acta Phys. Sin. 62 076106 (in Chinese) [张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新 2013 62 076106]
[4] Holmes S, Adams L 1993 Handbook of Radiation Effects (New York: Oxford University Press) pp16-45
[5] Goiffon V, Magnan P, Saint O, Bernard F, Rolland G 2008 IEEE Trans. Nucl. Sci. 55 3494
[6] Bogaerts J, Dierickx B, Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513
[7] Beaumel M, Herve D, van Aken D 2010 IEEE Trans. Nucl. Sci. 57 2056
[8] Virmontois C, Goiffon V, Magnan P, Girard S, Saint O, Petit S, Rolland G, Bardoux A 2012 IEEE Trans. Nucl. Sci. 59 927
[9] Li Y D, Wang B, Guo Q, Ma L Y, Ren J W 2013 Opt. Precision Eng. 21 42 (in Chinese) [李豫东, 汪波, 郭旗, 玛丽娅, 任建伟 2013 光学 精密工程 21 42]
[10] Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp7-68
[11] Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp80-118
[12] Gao B, Liu G, Wang L X, Han Z S, Zhang Y F, Wang C L, Wen J C 2012 Acta Phys. Sin. 61 176107 (in Chinese) [高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超 2012 61 176107]
[13] Hopkinson G 2000 IEEE Trans. Nucl. Sci. 47 2480
[14] Bogaerts J, Dierickx B, Meynants G, Uwaerts D 2003 IEEE Trans. Elec. Dev. 50 84
[15] Zhao S, Wang S J 2010 Microcomputer Inform. 34 193 (in Chinese) [赵爽, 王世金 2010 微计算机信息 34 193]
[16] Goiffon V, Magnan P, Saint-Pé O, Bernard F, Rolland G 2009 Nucl. Instrum. Meth. A 610 225
[17] Boch J, Saigne F, Schrimpf R, Fleetwood D, Cizmarik R, Zander D 2004 IEEE Trans. Nucl. Sci. 51 2903
[18] Goiffon V, Virmontois C, Magnan P, Girard S, Paillet P 2010 IEEE Trans. Nucl. Sci. 57 3087
[19] Adamec V, Calderwood J 1975 J. Phys. D: Appl. Phys. 8 551
[20] Srour J, Marshall C, Marshall P 2003 IEEE Trans. Nucl. Sci. 50 653
-
[1] Dai S W, Jia Y Z, Zhang B M, Wu J, Sun H X, Liu E H, Wei J Y, Chen B, Huang C N, Xue C B, Yang J F, Fang G Y, Wang J Y, Wang H Y, An J S 2014 Sci. China Technol. Sin. 44 361 (in Chinese) [代树武, 贾瑛卓, 张宝明, 吴季, 孙辉先, 刘恩海, 魏建彦, 陈波, 黄长宁, 薛长斌, 杨建峰, 方广有, 王建宇, 王焕玉, 安军社 2014 中国科学 技术科学 44 361]
[2] Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102 (in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 63 056102]
[3] Zhang X F, Li Y D, Guo Q, Luo M C, He C F, Yu X, Shen Z H, Zhang X Y, Deng W, Wu Z X 2013 Acta Phys. Sin. 62 076106 (in Chinese) [张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新 2013 62 076106]
[4] Holmes S, Adams L 1993 Handbook of Radiation Effects (New York: Oxford University Press) pp16-45
[5] Goiffon V, Magnan P, Saint O, Bernard F, Rolland G 2008 IEEE Trans. Nucl. Sci. 55 3494
[6] Bogaerts J, Dierickx B, Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513
[7] Beaumel M, Herve D, van Aken D 2010 IEEE Trans. Nucl. Sci. 57 2056
[8] Virmontois C, Goiffon V, Magnan P, Girard S, Saint O, Petit S, Rolland G, Bardoux A 2012 IEEE Trans. Nucl. Sci. 59 927
[9] Li Y D, Wang B, Guo Q, Ma L Y, Ren J W 2013 Opt. Precision Eng. 21 42 (in Chinese) [李豫东, 汪波, 郭旗, 玛丽娅, 任建伟 2013 光学 精密工程 21 42]
[10] Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp7-68
[11] Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp80-118
[12] Gao B, Liu G, Wang L X, Han Z S, Zhang Y F, Wang C L, Wen J C 2012 Acta Phys. Sin. 61 176107 (in Chinese) [高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超 2012 61 176107]
[13] Hopkinson G 2000 IEEE Trans. Nucl. Sci. 47 2480
[14] Bogaerts J, Dierickx B, Meynants G, Uwaerts D 2003 IEEE Trans. Elec. Dev. 50 84
[15] Zhao S, Wang S J 2010 Microcomputer Inform. 34 193 (in Chinese) [赵爽, 王世金 2010 微计算机信息 34 193]
[16] Goiffon V, Magnan P, Saint-Pé O, Bernard F, Rolland G 2009 Nucl. Instrum. Meth. A 610 225
[17] Boch J, Saigne F, Schrimpf R, Fleetwood D, Cizmarik R, Zander D 2004 IEEE Trans. Nucl. Sci. 51 2903
[18] Goiffon V, Virmontois C, Magnan P, Girard S, Paillet P 2010 IEEE Trans. Nucl. Sci. 57 3087
[19] Adamec V, Calderwood J 1975 J. Phys. D: Appl. Phys. 8 551
[20] Srour J, Marshall C, Marshall P 2003 IEEE Trans. Nucl. Sci. 50 653
Catalog
Metrics
- Abstract views: 6276
- PDF Downloads: 3883
- Cited By: 0