-
基于p-n结暗特性双指数模型,对经质子辐射后的单结GaAs/Ge太阳电池的暗特性I-V曲线进行数值拟合,确定了单结GaAs/Ge太阳电池在辐射前后的四个暗特性特征参数,即串联电阻Rs、并联电阻Rsh、扩散电流Is1和复合电流Is2. 研究结果表明,质子辐射后单结GaAs/Ge太阳电池的Rs,Rsh,Is1和Is2四个暗特性参数均发生显著变化. 经低能质子辐射后,单结GaAs/Ge太阳电池的Rsh随位移损伤剂量的增加而减小,而Rs,Is1 和Is2三个参数随位移损伤剂量的增加而增大,其中串联电阻随位移损伤剂量线性增加而与辐射质子能量无关. 理论分析表明,上述参数的变化与质子辐射损伤区域分布有关. 基区和发射区的损伤主要引起单结电池串联电阻和扩散电流的增加;结区的损伤导致并联电阻减小,复合电流增大.In this paper, the dark electrical properties are studied by measuring the dark current-voltage characteristics of a type of domestic single-junction (SJ) GaAs/Ge solar cell after proton irradiation. Using a double exponential mode for the dark electrical properties of p-n junction, the dark I-V curves of the proton-irradiated SJ cells are mathematically fitted, and there are four kinds of typical parameters, namely serious resistance (Rs), parallel resistance (Rsh), diffusion current (Is1), and recombination current (Is2), which are determined to characterize the irradiation effects. Hence, four parameters such as Rs, Rsh, Is1 and Is2 are significantly changed after proton irradiation, where Rs, Rsh, Is1 increase while Rsh decreases with increasing the displacement damage dose. In addition, R_{s } increases with displacement damage dose, which is unrelated to proton energies. Theoretical analysis indicates that the above-mentioned changes of the parameters result from the damage distributions in different regions of the solar cells. Irradiation-induced damage in the base and emitter regions of the cells could induce Rs and Is1 to augment, while junction-region damage causes the Rsh to decrease but the Is2 to increase.
[1] Bissels G M M W, Asselbergs M A H, Bauhuis G J, Mulder P, Haverkamp E J, Vlieg E, Schermer J J 2012 Sol. Energy Mater. Sol. Cells 104 97
[2] Fedoseyev, Alex, Marek Turowski, Timothy Bald, Ashok RamanJeffrey, H Warner 2013 Proceedings SPIE 8876, Nanophotonics and Macrophotonics for Space Environments VⅡ San Diego, United States, September 24, 2013, p88760W-14
[3] Hu, J M, Wu Y Y, Zhang Z W, Yang D Z, He S Y 2008 Nucl. Instrum. Methods Phys. Res. B 266 3577
[4] Imaizumi M, Yuri Y, Bolton P R, Sato S, Ohshima T 2012 Photovoltaic Specialists Conference, 2012 38th IEEE Astin, United States, June 3-8, 2012 p002831
[5] Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110(in Chinese)[吴宜勇, 岳龙, 胡建民, 兰慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]
[6] Anspaugh B E 1996 GaAs Solar Cell Radiation Handbook (Vol. 1) (California: JPL Publication) pp1-28
[7] Gao X, Yao S S, Xue Y X, Li K, Li D M, Wang Y, Wang Y F, Feng Z Z 2009 Chin. Phys. B 18 5015
[8] Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 057302
[9] Werner J H 1988 Appl. Phys. A 47 291
[10] Ortiz-Conde A, Ma Y S, Thomson J, Santos E, Liou J J, García Sánchez F J, Lei M, Finol J, Layman P 1999 Solid-State Electron. 43 845
[11] Kaminski A, Marchand J J, Fave A, Laugier A 1997 Photovoltaic Specialists Conference Anaheim, United States, Sep 29-Oct 3, 1997 p203
[12] Wang Q H, Lord K J, Woodyard R 2000 Photovoltaic Specialists Conference Anchorage, United States, Sep. 15-22, 2000 p1057
[13] Lord K R, Walters M R, Woodyard J R 1993 Photovoltaic Specialists Conference Louisville, United States, May 10-14, 1993 p1448
[14] Walters R J, Messenger S R, Cotal H L, Summers G P 1996 J. Appl. Phys. 80 4315
[15] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818
-
[1] Bissels G M M W, Asselbergs M A H, Bauhuis G J, Mulder P, Haverkamp E J, Vlieg E, Schermer J J 2012 Sol. Energy Mater. Sol. Cells 104 97
[2] Fedoseyev, Alex, Marek Turowski, Timothy Bald, Ashok RamanJeffrey, H Warner 2013 Proceedings SPIE 8876, Nanophotonics and Macrophotonics for Space Environments VⅡ San Diego, United States, September 24, 2013, p88760W-14
[3] Hu, J M, Wu Y Y, Zhang Z W, Yang D Z, He S Y 2008 Nucl. Instrum. Methods Phys. Res. B 266 3577
[4] Imaizumi M, Yuri Y, Bolton P R, Sato S, Ohshima T 2012 Photovoltaic Specialists Conference, 2012 38th IEEE Astin, United States, June 3-8, 2012 p002831
[5] Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110(in Chinese)[吴宜勇, 岳龙, 胡建民, 兰慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]
[6] Anspaugh B E 1996 GaAs Solar Cell Radiation Handbook (Vol. 1) (California: JPL Publication) pp1-28
[7] Gao X, Yao S S, Xue Y X, Li K, Li D M, Wang Y, Wang Y F, Feng Z Z 2009 Chin. Phys. B 18 5015
[8] Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 057302
[9] Werner J H 1988 Appl. Phys. A 47 291
[10] Ortiz-Conde A, Ma Y S, Thomson J, Santos E, Liou J J, García Sánchez F J, Lei M, Finol J, Layman P 1999 Solid-State Electron. 43 845
[11] Kaminski A, Marchand J J, Fave A, Laugier A 1997 Photovoltaic Specialists Conference Anaheim, United States, Sep 29-Oct 3, 1997 p203
[12] Wang Q H, Lord K J, Woodyard R 2000 Photovoltaic Specialists Conference Anchorage, United States, Sep. 15-22, 2000 p1057
[13] Lord K R, Walters M R, Woodyard J R 1993 Photovoltaic Specialists Conference Louisville, United States, May 10-14, 1993 p1448
[14] Walters R J, Messenger S R, Cotal H L, Summers G P 1996 J. Appl. Phys. 80 4315
[15] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818
计量
- 文章访问数: 5802
- PDF下载量: 787
- 被引次数: 0