-
Based on the production kinetics of oxide-trapped charge and interface-trapped charge and the microscopic mechanism of radiation damage, a model of post-irradiation threshold voltage drift due to oxide trap and interface trap as a function of radiation dose is proposed. This model predicts that the post-irradiation threshold voltage drift due to oxide trap and interface trap would be linear in dose at low dose levels. At high dose levels, the post-irradiation threshold voltage drift due to oxide trap tend to be saturated, its peak value has no correlation with radiation dose, and the post-irradiation threshold voltage drift due to interface trap has an exponential relationship with radiation dose. In addition, the model indicates that the oxide-trapped charge and the interface-trapped charge start a saturation phenomenon at different radiation doses, and the saturation phenomenon of oxide-trapped charge appears earlier than interface-trapped charge. Finally, the experimental results accord well with the model. This model provides a more accurate prediction for radiation damage in metal-oxide-semiconductor field effect transistor.
-
Keywords:
- interface trap /
- oxide trap /
- metal-oxide-semiconductor field effect transistor /
- radiation
[1] Meisenheimer T L, Fleetwood D M, Shaneyfelt M R, Riewe L C 1991 IEEE Trans. Nucl. Sci. 38 1297
[2] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[3] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[4] Sergey N R, Claude R C 2002 IEEE Trans. Nucl. Sci. 49 2650
[5] Harold P H, Ronald L P, Steven C W 2003 IEEE Trans. Nucl. Sci. 50 1901
[6] Chen X J, Barnaby H J, Vermeire B 2007 IEEE Trans. Nucl. Sci. 54 1913
[7] Fleetwood D M, Meisenheimer T L, Scofield J H 1994 IEEE Trans. Electron. 41 1953
[8] Klein R B, Saks N S, Shanfield Z 1990 IEEE Trans. Nucl. Sci. 37 1690
[9] Naruke K, Yoshida M, Maeguchi K, Tango H 1983 IEEE Trans. Nucl. Sci. 30 4054
[10] Winokur P S, Boesch H E, McGarrity J M, McLean F B 1977 IEEE Trans. Nucl. Sci. 24 2113
[11] Benedetto J X, Boesch H E, McLean F B 1988 IEEE Trans. Nucl. Sci. 35 1260
[12] Lenahanl P M, Conley J F 1998 IEEE Trans. Nucl. Sci. 45 2413
[13] Shaposhnikov A V, Gritsenko V A, Zhidomirov G M, Roger M 2002 Phys. Sol. State 44 1028
[14] Fleetwood D M, Winokur P S, Reber R A, Meisenheimer T L,Schwank J R, Shaneyfelt M R, Riewe L C 1993 Appl. Phys. Lett. 73 5058
[15] Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese) [李瑞珉, 杜磊, 庄奕琪, 包军林 2007 56 3400]
[16] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158
[17] Chen W H, Du L, Zhuang Y Q, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090 (in Chinese) [陈伟华, 杜磊, 庒奕琪, 何亮, 张天福, 张雪 2009 58 4090]
[18] Lai Z W 1998 Anti-Radiation Electronics: Radiation Effects and Radiation-Harden Theory (Beijing: National Defence Industry Press) p74 (in Chinese) [赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版杜) 第74页]
[19] McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133
-
[1] Meisenheimer T L, Fleetwood D M, Shaneyfelt M R, Riewe L C 1991 IEEE Trans. Nucl. Sci. 38 1297
[2] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[3] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[4] Sergey N R, Claude R C 2002 IEEE Trans. Nucl. Sci. 49 2650
[5] Harold P H, Ronald L P, Steven C W 2003 IEEE Trans. Nucl. Sci. 50 1901
[6] Chen X J, Barnaby H J, Vermeire B 2007 IEEE Trans. Nucl. Sci. 54 1913
[7] Fleetwood D M, Meisenheimer T L, Scofield J H 1994 IEEE Trans. Electron. 41 1953
[8] Klein R B, Saks N S, Shanfield Z 1990 IEEE Trans. Nucl. Sci. 37 1690
[9] Naruke K, Yoshida M, Maeguchi K, Tango H 1983 IEEE Trans. Nucl. Sci. 30 4054
[10] Winokur P S, Boesch H E, McGarrity J M, McLean F B 1977 IEEE Trans. Nucl. Sci. 24 2113
[11] Benedetto J X, Boesch H E, McLean F B 1988 IEEE Trans. Nucl. Sci. 35 1260
[12] Lenahanl P M, Conley J F 1998 IEEE Trans. Nucl. Sci. 45 2413
[13] Shaposhnikov A V, Gritsenko V A, Zhidomirov G M, Roger M 2002 Phys. Sol. State 44 1028
[14] Fleetwood D M, Winokur P S, Reber R A, Meisenheimer T L,Schwank J R, Shaneyfelt M R, Riewe L C 1993 Appl. Phys. Lett. 73 5058
[15] Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese) [李瑞珉, 杜磊, 庄奕琪, 包军林 2007 56 3400]
[16] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158
[17] Chen W H, Du L, Zhuang Y Q, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090 (in Chinese) [陈伟华, 杜磊, 庒奕琪, 何亮, 张天福, 张雪 2009 58 4090]
[18] Lai Z W 1998 Anti-Radiation Electronics: Radiation Effects and Radiation-Harden Theory (Beijing: National Defence Industry Press) p74 (in Chinese) [赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版杜) 第74页]
[19] McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133
Catalog
Metrics
- Abstract views: 8343
- PDF Downloads: 703
- Cited By: 0