-
基于氧化层陷阱电荷以及界面陷阱电荷的产生动力学以及辐射应力损伤的微观机理,推导出了金属-氧化物-半导体场效应管(MOSFET)中辐射应力引起的氧化层陷阱电荷、界面陷阱电荷导致的阈值电压漂移量与辐射剂量之间定量关系的模型. 根据模型可以得到:低剂量情况下,氧化层陷阱电荷与界面陷阱电荷导致的阈值电压漂移量与辐射剂量成正比;高剂量情况下,氧化层陷阱电荷导致的阈值电压漂移量发生饱和, 其峰值与辐射剂量无关,界面陷阱电荷导致的阈值电压漂移量与辐射剂量呈指数关系. 另外,模型还表明氧化层陷阱电荷与界面陷阱电荷在不同的辐射剂量点开始产生饱和现象, 其中界面陷阱电荷先于氧化层陷阱电荷产生饱和现象.最后,用实验验证了该模型的正确性. 该模型可以较为准确地预测辐射应力作用下MOSFET的退化情况.
-
关键词:
- 界面陷阱 /
- 氧化层陷阱 /
- 金属-氧化物-半导体场效应管 /
- 辐射
Based on the production kinetics of oxide-trapped charge and interface-trapped charge and the microscopic mechanism of radiation damage, a model of post-irradiation threshold voltage drift due to oxide trap and interface trap as a function of radiation dose is proposed. This model predicts that the post-irradiation threshold voltage drift due to oxide trap and interface trap would be linear in dose at low dose levels. At high dose levels, the post-irradiation threshold voltage drift due to oxide trap tend to be saturated, its peak value has no correlation with radiation dose, and the post-irradiation threshold voltage drift due to interface trap has an exponential relationship with radiation dose. In addition, the model indicates that the oxide-trapped charge and the interface-trapped charge start a saturation phenomenon at different radiation doses, and the saturation phenomenon of oxide-trapped charge appears earlier than interface-trapped charge. Finally, the experimental results accord well with the model. This model provides a more accurate prediction for radiation damage in metal-oxide-semiconductor field effect transistor.-
Keywords:
- interface trap /
- oxide trap /
- metal-oxide-semiconductor field effect transistor /
- radiation
[1] Meisenheimer T L, Fleetwood D M, Shaneyfelt M R, Riewe L C 1991 IEEE Trans. Nucl. Sci. 38 1297
[2] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[3] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[4] Sergey N R, Claude R C 2002 IEEE Trans. Nucl. Sci. 49 2650
[5] Harold P H, Ronald L P, Steven C W 2003 IEEE Trans. Nucl. Sci. 50 1901
[6] Chen X J, Barnaby H J, Vermeire B 2007 IEEE Trans. Nucl. Sci. 54 1913
[7] Fleetwood D M, Meisenheimer T L, Scofield J H 1994 IEEE Trans. Electron. 41 1953
[8] Klein R B, Saks N S, Shanfield Z 1990 IEEE Trans. Nucl. Sci. 37 1690
[9] Naruke K, Yoshida M, Maeguchi K, Tango H 1983 IEEE Trans. Nucl. Sci. 30 4054
[10] Winokur P S, Boesch H E, McGarrity J M, McLean F B 1977 IEEE Trans. Nucl. Sci. 24 2113
[11] Benedetto J X, Boesch H E, McLean F B 1988 IEEE Trans. Nucl. Sci. 35 1260
[12] Lenahanl P M, Conley J F 1998 IEEE Trans. Nucl. Sci. 45 2413
[13] Shaposhnikov A V, Gritsenko V A, Zhidomirov G M, Roger M 2002 Phys. Sol. State 44 1028
[14] Fleetwood D M, Winokur P S, Reber R A, Meisenheimer T L,Schwank J R, Shaneyfelt M R, Riewe L C 1993 Appl. Phys. Lett. 73 5058
[15] Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese) [李瑞珉, 杜磊, 庄奕琪, 包军林 2007 56 3400]
[16] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158
[17] Chen W H, Du L, Zhuang Y Q, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090 (in Chinese) [陈伟华, 杜磊, 庒奕琪, 何亮, 张天福, 张雪 2009 58 4090]
[18] Lai Z W 1998 Anti-Radiation Electronics: Radiation Effects and Radiation-Harden Theory (Beijing: National Defence Industry Press) p74 (in Chinese) [赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版杜) 第74页]
[19] McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133
-
[1] Meisenheimer T L, Fleetwood D M, Shaneyfelt M R, Riewe L C 1991 IEEE Trans. Nucl. Sci. 38 1297
[2] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[3] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[4] Sergey N R, Claude R C 2002 IEEE Trans. Nucl. Sci. 49 2650
[5] Harold P H, Ronald L P, Steven C W 2003 IEEE Trans. Nucl. Sci. 50 1901
[6] Chen X J, Barnaby H J, Vermeire B 2007 IEEE Trans. Nucl. Sci. 54 1913
[7] Fleetwood D M, Meisenheimer T L, Scofield J H 1994 IEEE Trans. Electron. 41 1953
[8] Klein R B, Saks N S, Shanfield Z 1990 IEEE Trans. Nucl. Sci. 37 1690
[9] Naruke K, Yoshida M, Maeguchi K, Tango H 1983 IEEE Trans. Nucl. Sci. 30 4054
[10] Winokur P S, Boesch H E, McGarrity J M, McLean F B 1977 IEEE Trans. Nucl. Sci. 24 2113
[11] Benedetto J X, Boesch H E, McLean F B 1988 IEEE Trans. Nucl. Sci. 35 1260
[12] Lenahanl P M, Conley J F 1998 IEEE Trans. Nucl. Sci. 45 2413
[13] Shaposhnikov A V, Gritsenko V A, Zhidomirov G M, Roger M 2002 Phys. Sol. State 44 1028
[14] Fleetwood D M, Winokur P S, Reber R A, Meisenheimer T L,Schwank J R, Shaneyfelt M R, Riewe L C 1993 Appl. Phys. Lett. 73 5058
[15] Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese) [李瑞珉, 杜磊, 庄奕琪, 包军林 2007 56 3400]
[16] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158
[17] Chen W H, Du L, Zhuang Y Q, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090 (in Chinese) [陈伟华, 杜磊, 庒奕琪, 何亮, 张天福, 张雪 2009 58 4090]
[18] Lai Z W 1998 Anti-Radiation Electronics: Radiation Effects and Radiation-Harden Theory (Beijing: National Defence Industry Press) p74 (in Chinese) [赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版杜) 第74页]
[19] McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133
计量
- 文章访问数: 8341
- PDF下载量: 703
- 被引次数: 0